| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879 | /* pako 0.2.9 nodeca/pako */(function(f){if(typeof exports==="object"&&typeof module!=="undefined"){module.exports=f()}else if(typeof define==="function"&&define.amd){define([],f)}else{var g;if(typeof window!=="undefined"){g=window}else if(typeof global!=="undefined"){g=global}else if(typeof self!=="undefined"){g=self}else{g=this}g.pako = f()}})(function(){var define,module,exports;return (function e(t,n,r){function s(o,u){if(!n[o]){if(!t[o]){var a=typeof require=="function"&&require;if(!u&&a)return a(o,!0);if(i)return i(o,!0);var f=new Error("Cannot find module '"+o+"'");throw f.code="MODULE_NOT_FOUND",f}var l=n[o]={exports:{}};t[o][0].call(l.exports,function(e){var n=t[o][1][e];return s(n?n:e)},l,l.exports,e,t,n,r)}return n[o].exports}var i=typeof require=="function"&&require;for(var o=0;o<r.length;o++)s(r[o]);return s})({1:[function(require,module,exports){'use strict';var TYPED_OK =  (typeof Uint8Array !== 'undefined') &&                (typeof Uint16Array !== 'undefined') &&                (typeof Int32Array !== 'undefined');exports.assign = function (obj /*from1, from2, from3, ...*/) {  var sources = Array.prototype.slice.call(arguments, 1);  while (sources.length) {    var source = sources.shift();    if (!source) { continue; }    if (typeof source !== 'object') {      throw new TypeError(source + 'must be non-object');    }    for (var p in source) {      if (source.hasOwnProperty(p)) {        obj[p] = source[p];      }    }  }  return obj;};// reduce buffer size, avoiding mem copyexports.shrinkBuf = function (buf, size) {  if (buf.length === size) { return buf; }  if (buf.subarray) { return buf.subarray(0, size); }  buf.length = size;  return buf;};var fnTyped = {  arraySet: function (dest, src, src_offs, len, dest_offs) {    if (src.subarray && dest.subarray) {      dest.set(src.subarray(src_offs, src_offs + len), dest_offs);      return;    }    // Fallback to ordinary array    for (var i = 0; i < len; i++) {      dest[dest_offs + i] = src[src_offs + i];    }  },  // Join array of chunks to single array.  flattenChunks: function (chunks) {    var i, l, len, pos, chunk, result;    // calculate data length    len = 0;    for (i = 0, l = chunks.length; i < l; i++) {      len += chunks[i].length;    }    // join chunks    result = new Uint8Array(len);    pos = 0;    for (i = 0, l = chunks.length; i < l; i++) {      chunk = chunks[i];      result.set(chunk, pos);      pos += chunk.length;    }    return result;  }};var fnUntyped = {  arraySet: function (dest, src, src_offs, len, dest_offs) {    for (var i = 0; i < len; i++) {      dest[dest_offs + i] = src[src_offs + i];    }  },  // Join array of chunks to single array.  flattenChunks: function (chunks) {    return [].concat.apply([], chunks);  }};// Enable/Disable typed arrays use, for testing//exports.setTyped = function (on) {  if (on) {    exports.Buf8  = Uint8Array;    exports.Buf16 = Uint16Array;    exports.Buf32 = Int32Array;    exports.assign(exports, fnTyped);  } else {    exports.Buf8  = Array;    exports.Buf16 = Array;    exports.Buf32 = Array;    exports.assign(exports, fnUntyped);  }};exports.setTyped(TYPED_OK);},{}],2:[function(require,module,exports){// String encode/decode helpers'use strict';var utils = require('./common');// Quick check if we can use fast array to bin string conversion//// - apply(Array) can fail on Android 2.2// - apply(Uint8Array) can fail on iOS 5.1 Safary//var STR_APPLY_OK = true;var STR_APPLY_UIA_OK = true;try { String.fromCharCode.apply(null, [ 0 ]); } catch (__) { STR_APPLY_OK = false; }try { String.fromCharCode.apply(null, new Uint8Array(1)); } catch (__) { STR_APPLY_UIA_OK = false; }// Table with utf8 lengths (calculated by first byte of sequence)// Note, that 5 & 6-byte values and some 4-byte values can not be represented in JS,// because max possible codepoint is 0x10ffffvar _utf8len = new utils.Buf8(256);for (var q = 0; q < 256; q++) {  _utf8len[q] = (q >= 252 ? 6 : q >= 248 ? 5 : q >= 240 ? 4 : q >= 224 ? 3 : q >= 192 ? 2 : 1);}_utf8len[254] = _utf8len[254] = 1; // Invalid sequence start// convert string to array (typed, when possible)exports.string2buf = function (str) {  var buf, c, c2, m_pos, i, str_len = str.length, buf_len = 0;  // count binary size  for (m_pos = 0; m_pos < str_len; m_pos++) {    c = str.charCodeAt(m_pos);    if ((c & 0xfc00) === 0xd800 && (m_pos + 1 < str_len)) {      c2 = str.charCodeAt(m_pos + 1);      if ((c2 & 0xfc00) === 0xdc00) {        c = 0x10000 + ((c - 0xd800) << 10) + (c2 - 0xdc00);        m_pos++;      }    }    buf_len += c < 0x80 ? 1 : c < 0x800 ? 2 : c < 0x10000 ? 3 : 4;  }  // allocate buffer  buf = new utils.Buf8(buf_len);  // convert  for (i = 0, m_pos = 0; i < buf_len; m_pos++) {    c = str.charCodeAt(m_pos);    if ((c & 0xfc00) === 0xd800 && (m_pos + 1 < str_len)) {      c2 = str.charCodeAt(m_pos + 1);      if ((c2 & 0xfc00) === 0xdc00) {        c = 0x10000 + ((c - 0xd800) << 10) + (c2 - 0xdc00);        m_pos++;      }    }    if (c < 0x80) {      /* one byte */      buf[i++] = c;    } else if (c < 0x800) {      /* two bytes */      buf[i++] = 0xC0 | (c >>> 6);      buf[i++] = 0x80 | (c & 0x3f);    } else if (c < 0x10000) {      /* three bytes */      buf[i++] = 0xE0 | (c >>> 12);      buf[i++] = 0x80 | (c >>> 6 & 0x3f);      buf[i++] = 0x80 | (c & 0x3f);    } else {      /* four bytes */      buf[i++] = 0xf0 | (c >>> 18);      buf[i++] = 0x80 | (c >>> 12 & 0x3f);      buf[i++] = 0x80 | (c >>> 6 & 0x3f);      buf[i++] = 0x80 | (c & 0x3f);    }  }  return buf;};// Helper (used in 2 places)function buf2binstring(buf, len) {  // use fallback for big arrays to avoid stack overflow  if (len < 65537) {    if ((buf.subarray && STR_APPLY_UIA_OK) || (!buf.subarray && STR_APPLY_OK)) {      return String.fromCharCode.apply(null, utils.shrinkBuf(buf, len));    }  }  var result = '';  for (var i = 0; i < len; i++) {    result += String.fromCharCode(buf[i]);  }  return result;}// Convert byte array to binary stringexports.buf2binstring = function (buf) {  return buf2binstring(buf, buf.length);};// Convert binary string (typed, when possible)exports.binstring2buf = function (str) {  var buf = new utils.Buf8(str.length);  for (var i = 0, len = buf.length; i < len; i++) {    buf[i] = str.charCodeAt(i);  }  return buf;};// convert array to stringexports.buf2string = function (buf, max) {  var i, out, c, c_len;  var len = max || buf.length;  // Reserve max possible length (2 words per char)  // NB: by unknown reasons, Array is significantly faster for  //     String.fromCharCode.apply than Uint16Array.  var utf16buf = new Array(len * 2);  for (out = 0, i = 0; i < len;) {    c = buf[i++];    // quick process ascii    if (c < 0x80) { utf16buf[out++] = c; continue; }    c_len = _utf8len[c];    // skip 5 & 6 byte codes    if (c_len > 4) { utf16buf[out++] = 0xfffd; i += c_len - 1; continue; }    // apply mask on first byte    c &= c_len === 2 ? 0x1f : c_len === 3 ? 0x0f : 0x07;    // join the rest    while (c_len > 1 && i < len) {      c = (c << 6) | (buf[i++] & 0x3f);      c_len--;    }    // terminated by end of string?    if (c_len > 1) { utf16buf[out++] = 0xfffd; continue; }    if (c < 0x10000) {      utf16buf[out++] = c;    } else {      c -= 0x10000;      utf16buf[out++] = 0xd800 | ((c >> 10) & 0x3ff);      utf16buf[out++] = 0xdc00 | (c & 0x3ff);    }  }  return buf2binstring(utf16buf, out);};// Calculate max possible position in utf8 buffer,// that will not break sequence. If that's not possible// - (very small limits) return max size as is.//// buf[] - utf8 bytes array// max   - length limit (mandatory);exports.utf8border = function (buf, max) {  var pos;  max = max || buf.length;  if (max > buf.length) { max = buf.length; }  // go back from last position, until start of sequence found  pos = max - 1;  while (pos >= 0 && (buf[pos] & 0xC0) === 0x80) { pos--; }  // Fuckup - very small and broken sequence,  // return max, because we should return something anyway.  if (pos < 0) { return max; }  // If we came to start of buffer - that means vuffer is too small,  // return max too.  if (pos === 0) { return max; }  return (pos + _utf8len[buf[pos]] > max) ? pos : max;};},{"./common":1}],3:[function(require,module,exports){'use strict';// Note: adler32 takes 12% for level 0 and 2% for level 6.// It doesn't worth to make additional optimizationa as in original.// Small size is preferable.function adler32(adler, buf, len, pos) {  var s1 = (adler & 0xffff) |0,      s2 = ((adler >>> 16) & 0xffff) |0,      n = 0;  while (len !== 0) {    // Set limit ~ twice less than 5552, to keep    // s2 in 31-bits, because we force signed ints.    // in other case %= will fail.    n = len > 2000 ? 2000 : len;    len -= n;    do {      s1 = (s1 + buf[pos++]) |0;      s2 = (s2 + s1) |0;    } while (--n);    s1 %= 65521;    s2 %= 65521;  }  return (s1 | (s2 << 16)) |0;}module.exports = adler32;},{}],4:[function(require,module,exports){'use strict';// Note: we can't get significant speed boost here.// So write code to minimize size - no pregenerated tables// and array tools dependencies.// Use ordinary array, since untyped makes no boost herefunction makeTable() {  var c, table = [];  for (var n = 0; n < 256; n++) {    c = n;    for (var k = 0; k < 8; k++) {      c = ((c & 1) ? (0xEDB88320 ^ (c >>> 1)) : (c >>> 1));    }    table[n] = c;  }  return table;}// Create table on load. Just 255 signed longs. Not a problem.var crcTable = makeTable();function crc32(crc, buf, len, pos) {  var t = crcTable,      end = pos + len;  crc ^= -1;  for (var i = pos; i < end; i++) {    crc = (crc >>> 8) ^ t[(crc ^ buf[i]) & 0xFF];  }  return (crc ^ (-1)); // >>> 0;}module.exports = crc32;},{}],5:[function(require,module,exports){'use strict';var utils   = require('../utils/common');var trees   = require('./trees');var adler32 = require('./adler32');var crc32   = require('./crc32');var msg     = require('./messages');/* Public constants ==========================================================*//* ===========================================================================*//* Allowed flush values; see deflate() and inflate() below for details */var Z_NO_FLUSH      = 0;var Z_PARTIAL_FLUSH = 1;//var Z_SYNC_FLUSH    = 2;var Z_FULL_FLUSH    = 3;var Z_FINISH        = 4;var Z_BLOCK         = 5;//var Z_TREES         = 6;/* Return codes for the compression/decompression functions. Negative values * are errors, positive values are used for special but normal events. */var Z_OK            = 0;var Z_STREAM_END    = 1;//var Z_NEED_DICT     = 2;//var Z_ERRNO         = -1;var Z_STREAM_ERROR  = -2;var Z_DATA_ERROR    = -3;//var Z_MEM_ERROR     = -4;var Z_BUF_ERROR     = -5;//var Z_VERSION_ERROR = -6;/* compression levels *///var Z_NO_COMPRESSION      = 0;//var Z_BEST_SPEED          = 1;//var Z_BEST_COMPRESSION    = 9;var Z_DEFAULT_COMPRESSION = -1;var Z_FILTERED            = 1;var Z_HUFFMAN_ONLY        = 2;var Z_RLE                 = 3;var Z_FIXED               = 4;var Z_DEFAULT_STRATEGY    = 0;/* Possible values of the data_type field (though see inflate()) *///var Z_BINARY              = 0;//var Z_TEXT                = 1;//var Z_ASCII               = 1; // = Z_TEXTvar Z_UNKNOWN             = 2;/* The deflate compression method */var Z_DEFLATED  = 8;/*============================================================================*/var MAX_MEM_LEVEL = 9;/* Maximum value for memLevel in deflateInit2 */var MAX_WBITS = 15;/* 32K LZ77 window */var DEF_MEM_LEVEL = 8;var LENGTH_CODES  = 29;/* number of length codes, not counting the special END_BLOCK code */var LITERALS      = 256;/* number of literal bytes 0..255 */var L_CODES       = LITERALS + 1 + LENGTH_CODES;/* number of Literal or Length codes, including the END_BLOCK code */var D_CODES       = 30;/* number of distance codes */var BL_CODES      = 19;/* number of codes used to transfer the bit lengths */var HEAP_SIZE     = 2 * L_CODES + 1;/* maximum heap size */var MAX_BITS  = 15;/* All codes must not exceed MAX_BITS bits */var MIN_MATCH = 3;var MAX_MATCH = 258;var MIN_LOOKAHEAD = (MAX_MATCH + MIN_MATCH + 1);var PRESET_DICT = 0x20;var INIT_STATE = 42;var EXTRA_STATE = 69;var NAME_STATE = 73;var COMMENT_STATE = 91;var HCRC_STATE = 103;var BUSY_STATE = 113;var FINISH_STATE = 666;var BS_NEED_MORE      = 1; /* block not completed, need more input or more output */var BS_BLOCK_DONE     = 2; /* block flush performed */var BS_FINISH_STARTED = 3; /* finish started, need only more output at next deflate */var BS_FINISH_DONE    = 4; /* finish done, accept no more input or output */var OS_CODE = 0x03; // Unix :) . Don't detect, use this default.function err(strm, errorCode) {  strm.msg = msg[errorCode];  return errorCode;}function rank(f) {  return ((f) << 1) - ((f) > 4 ? 9 : 0);}function zero(buf) { var len = buf.length; while (--len >= 0) { buf[len] = 0; } }/* ========================================================================= * Flush as much pending output as possible. All deflate() output goes * through this function so some applications may wish to modify it * to avoid allocating a large strm->output buffer and copying into it. * (See also read_buf()). */function flush_pending(strm) {  var s = strm.state;  //_tr_flush_bits(s);  var len = s.pending;  if (len > strm.avail_out) {    len = strm.avail_out;  }  if (len === 0) { return; }  utils.arraySet(strm.output, s.pending_buf, s.pending_out, len, strm.next_out);  strm.next_out += len;  s.pending_out += len;  strm.total_out += len;  strm.avail_out -= len;  s.pending -= len;  if (s.pending === 0) {    s.pending_out = 0;  }}function flush_block_only(s, last) {  trees._tr_flush_block(s, (s.block_start >= 0 ? s.block_start : -1), s.strstart - s.block_start, last);  s.block_start = s.strstart;  flush_pending(s.strm);}function put_byte(s, b) {  s.pending_buf[s.pending++] = b;}/* ========================================================================= * Put a short in the pending buffer. The 16-bit value is put in MSB order. * IN assertion: the stream state is correct and there is enough room in * pending_buf. */function putShortMSB(s, b) {//  put_byte(s, (Byte)(b >> 8));//  put_byte(s, (Byte)(b & 0xff));  s.pending_buf[s.pending++] = (b >>> 8) & 0xff;  s.pending_buf[s.pending++] = b & 0xff;}/* =========================================================================== * Read a new buffer from the current input stream, update the adler32 * and total number of bytes read.  All deflate() input goes through * this function so some applications may wish to modify it to avoid * allocating a large strm->input buffer and copying from it. * (See also flush_pending()). */function read_buf(strm, buf, start, size) {  var len = strm.avail_in;  if (len > size) { len = size; }  if (len === 0) { return 0; }  strm.avail_in -= len;  // zmemcpy(buf, strm->next_in, len);  utils.arraySet(buf, strm.input, strm.next_in, len, start);  if (strm.state.wrap === 1) {    strm.adler = adler32(strm.adler, buf, len, start);  }  else if (strm.state.wrap === 2) {    strm.adler = crc32(strm.adler, buf, len, start);  }  strm.next_in += len;  strm.total_in += len;  return len;}/* =========================================================================== * Set match_start to the longest match starting at the given string and * return its length. Matches shorter or equal to prev_length are discarded, * in which case the result is equal to prev_length and match_start is * garbage. * IN assertions: cur_match is the head of the hash chain for the current *   string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1 * OUT assertion: the match length is not greater than s->lookahead. */function longest_match(s, cur_match) {  var chain_length = s.max_chain_length;      /* max hash chain length */  var scan = s.strstart; /* current string */  var match;                       /* matched string */  var len;                           /* length of current match */  var best_len = s.prev_length;              /* best match length so far */  var nice_match = s.nice_match;             /* stop if match long enough */  var limit = (s.strstart > (s.w_size - MIN_LOOKAHEAD)) ?      s.strstart - (s.w_size - MIN_LOOKAHEAD) : 0/*NIL*/;  var _win = s.window; // shortcut  var wmask = s.w_mask;  var prev  = s.prev;  /* Stop when cur_match becomes <= limit. To simplify the code,   * we prevent matches with the string of window index 0.   */  var strend = s.strstart + MAX_MATCH;  var scan_end1  = _win[scan + best_len - 1];  var scan_end   = _win[scan + best_len];  /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.   * It is easy to get rid of this optimization if necessary.   */  // Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");  /* Do not waste too much time if we already have a good match: */  if (s.prev_length >= s.good_match) {    chain_length >>= 2;  }  /* Do not look for matches beyond the end of the input. This is necessary   * to make deflate deterministic.   */  if (nice_match > s.lookahead) { nice_match = s.lookahead; }  // Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");  do {    // Assert(cur_match < s->strstart, "no future");    match = cur_match;    /* Skip to next match if the match length cannot increase     * or if the match length is less than 2.  Note that the checks below     * for insufficient lookahead only occur occasionally for performance     * reasons.  Therefore uninitialized memory will be accessed, and     * conditional jumps will be made that depend on those values.     * However the length of the match is limited to the lookahead, so     * the output of deflate is not affected by the uninitialized values.     */    if (_win[match + best_len]     !== scan_end  ||        _win[match + best_len - 1] !== scan_end1 ||        _win[match]                !== _win[scan] ||        _win[++match]              !== _win[scan + 1]) {      continue;    }    /* The check at best_len-1 can be removed because it will be made     * again later. (This heuristic is not always a win.)     * It is not necessary to compare scan[2] and match[2] since they     * are always equal when the other bytes match, given that     * the hash keys are equal and that HASH_BITS >= 8.     */    scan += 2;    match++;    // Assert(*scan == *match, "match[2]?");    /* We check for insufficient lookahead only every 8th comparison;     * the 256th check will be made at strstart+258.     */    do {      /*jshint noempty:false*/    } while (_win[++scan] === _win[++match] && _win[++scan] === _win[++match] &&             _win[++scan] === _win[++match] && _win[++scan] === _win[++match] &&             _win[++scan] === _win[++match] && _win[++scan] === _win[++match] &&             _win[++scan] === _win[++match] && _win[++scan] === _win[++match] &&             scan < strend);    // Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");    len = MAX_MATCH - (strend - scan);    scan = strend - MAX_MATCH;    if (len > best_len) {      s.match_start = cur_match;      best_len = len;      if (len >= nice_match) {        break;      }      scan_end1  = _win[scan + best_len - 1];      scan_end   = _win[scan + best_len];    }  } while ((cur_match = prev[cur_match & wmask]) > limit && --chain_length !== 0);  if (best_len <= s.lookahead) {    return best_len;  }  return s.lookahead;}/* =========================================================================== * Fill the window when the lookahead becomes insufficient. * Updates strstart and lookahead. * * IN assertion: lookahead < MIN_LOOKAHEAD * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD *    At least one byte has been read, or avail_in == 0; reads are *    performed for at least two bytes (required for the zip translate_eol *    option -- not supported here). */function fill_window(s) {  var _w_size = s.w_size;  var p, n, m, more, str;  //Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead");  do {    more = s.window_size - s.lookahead - s.strstart;    // JS ints have 32 bit, block below not needed    /* Deal with !@#$% 64K limit: */    //if (sizeof(int) <= 2) {    //    if (more == 0 && s->strstart == 0 && s->lookahead == 0) {    //        more = wsize;    //    //  } else if (more == (unsigned)(-1)) {    //        /* Very unlikely, but possible on 16 bit machine if    //         * strstart == 0 && lookahead == 1 (input done a byte at time)    //         */    //        more--;    //    }    //}    /* If the window is almost full and there is insufficient lookahead,     * move the upper half to the lower one to make room in the upper half.     */    if (s.strstart >= _w_size + (_w_size - MIN_LOOKAHEAD)) {      utils.arraySet(s.window, s.window, _w_size, _w_size, 0);      s.match_start -= _w_size;      s.strstart -= _w_size;      /* we now have strstart >= MAX_DIST */      s.block_start -= _w_size;      /* Slide the hash table (could be avoided with 32 bit values       at the expense of memory usage). We slide even when level == 0       to keep the hash table consistent if we switch back to level > 0       later. (Using level 0 permanently is not an optimal usage of       zlib, so we don't care about this pathological case.)       */      n = s.hash_size;      p = n;      do {        m = s.head[--p];        s.head[p] = (m >= _w_size ? m - _w_size : 0);      } while (--n);      n = _w_size;      p = n;      do {        m = s.prev[--p];        s.prev[p] = (m >= _w_size ? m - _w_size : 0);        /* If n is not on any hash chain, prev[n] is garbage but         * its value will never be used.         */      } while (--n);      more += _w_size;    }    if (s.strm.avail_in === 0) {      break;    }    /* If there was no sliding:     *    strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&     *    more == window_size - lookahead - strstart     * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)     * => more >= window_size - 2*WSIZE + 2     * In the BIG_MEM or MMAP case (not yet supported),     *   window_size == input_size + MIN_LOOKAHEAD  &&     *   strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.     * Otherwise, window_size == 2*WSIZE so more >= 2.     * If there was sliding, more >= WSIZE. So in all cases, more >= 2.     */    //Assert(more >= 2, "more < 2");    n = read_buf(s.strm, s.window, s.strstart + s.lookahead, more);    s.lookahead += n;    /* Initialize the hash value now that we have some input: */    if (s.lookahead + s.insert >= MIN_MATCH) {      str = s.strstart - s.insert;      s.ins_h = s.window[str];      /* UPDATE_HASH(s, s->ins_h, s->window[str + 1]); */      s.ins_h = ((s.ins_h << s.hash_shift) ^ s.window[str + 1]) & s.hash_mask;//#if MIN_MATCH != 3//        Call update_hash() MIN_MATCH-3 more times//#endif      while (s.insert) {        /* UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]); */        s.ins_h = ((s.ins_h << s.hash_shift) ^ s.window[str + MIN_MATCH - 1]) & s.hash_mask;        s.prev[str & s.w_mask] = s.head[s.ins_h];        s.head[s.ins_h] = str;        str++;        s.insert--;        if (s.lookahead + s.insert < MIN_MATCH) {          break;        }      }    }    /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,     * but this is not important since only literal bytes will be emitted.     */  } while (s.lookahead < MIN_LOOKAHEAD && s.strm.avail_in !== 0);  /* If the WIN_INIT bytes after the end of the current data have never been   * written, then zero those bytes in order to avoid memory check reports of   * the use of uninitialized (or uninitialised as Julian writes) bytes by   * the longest match routines.  Update the high water mark for the next   * time through here.  WIN_INIT is set to MAX_MATCH since the longest match   * routines allow scanning to strstart + MAX_MATCH, ignoring lookahead.   *///  if (s.high_water < s.window_size) {//    var curr = s.strstart + s.lookahead;//    var init = 0;////    if (s.high_water < curr) {//      /* Previous high water mark below current data -- zero WIN_INIT//       * bytes or up to end of window, whichever is less.//       *///      init = s.window_size - curr;//      if (init > WIN_INIT)//        init = WIN_INIT;//      zmemzero(s->window + curr, (unsigned)init);//      s->high_water = curr + init;//    }//    else if (s->high_water < (ulg)curr + WIN_INIT) {//      /* High water mark at or above current data, but below current data//       * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up//       * to end of window, whichever is less.//       *///      init = (ulg)curr + WIN_INIT - s->high_water;//      if (init > s->window_size - s->high_water)//        init = s->window_size - s->high_water;//      zmemzero(s->window + s->high_water, (unsigned)init);//      s->high_water += init;//    }//  }////  Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,//    "not enough room for search");}/* =========================================================================== * Copy without compression as much as possible from the input stream, return * the current block state. * This function does not insert new strings in the dictionary since * uncompressible data is probably not useful. This function is used * only for the level=0 compression option. * NOTE: this function should be optimized to avoid extra copying from * window to pending_buf. */function deflate_stored(s, flush) {  /* Stored blocks are limited to 0xffff bytes, pending_buf is limited   * to pending_buf_size, and each stored block has a 5 byte header:   */  var max_block_size = 0xffff;  if (max_block_size > s.pending_buf_size - 5) {    max_block_size = s.pending_buf_size - 5;  }  /* Copy as much as possible from input to output: */  for (;;) {    /* Fill the window as much as possible: */    if (s.lookahead <= 1) {      //Assert(s->strstart < s->w_size+MAX_DIST(s) ||      //  s->block_start >= (long)s->w_size, "slide too late");//      if (!(s.strstart < s.w_size + (s.w_size - MIN_LOOKAHEAD) ||//        s.block_start >= s.w_size)) {//        throw  new Error("slide too late");//      }      fill_window(s);      if (s.lookahead === 0 && flush === Z_NO_FLUSH) {        return BS_NEED_MORE;      }      if (s.lookahead === 0) {        break;      }      /* flush the current block */    }    //Assert(s->block_start >= 0L, "block gone");//    if (s.block_start < 0) throw new Error("block gone");    s.strstart += s.lookahead;    s.lookahead = 0;    /* Emit a stored block if pending_buf will be full: */    var max_start = s.block_start + max_block_size;    if (s.strstart === 0 || s.strstart >= max_start) {      /* strstart == 0 is possible when wraparound on 16-bit machine */      s.lookahead = s.strstart - max_start;      s.strstart = max_start;      /*** FLUSH_BLOCK(s, 0); ***/      flush_block_only(s, false);      if (s.strm.avail_out === 0) {        return BS_NEED_MORE;      }      /***/    }    /* Flush if we may have to slide, otherwise block_start may become     * negative and the data will be gone:     */    if (s.strstart - s.block_start >= (s.w_size - MIN_LOOKAHEAD)) {      /*** FLUSH_BLOCK(s, 0); ***/      flush_block_only(s, false);      if (s.strm.avail_out === 0) {        return BS_NEED_MORE;      }      /***/    }  }  s.insert = 0;  if (flush === Z_FINISH) {    /*** FLUSH_BLOCK(s, 1); ***/    flush_block_only(s, true);    if (s.strm.avail_out === 0) {      return BS_FINISH_STARTED;    }    /***/    return BS_FINISH_DONE;  }  if (s.strstart > s.block_start) {    /*** FLUSH_BLOCK(s, 0); ***/    flush_block_only(s, false);    if (s.strm.avail_out === 0) {      return BS_NEED_MORE;    }    /***/  }  return BS_NEED_MORE;}/* =========================================================================== * Compress as much as possible from the input stream, return the current * block state. * This function does not perform lazy evaluation of matches and inserts * new strings in the dictionary only for unmatched strings or for short * matches. It is used only for the fast compression options. */function deflate_fast(s, flush) {  var hash_head;        /* head of the hash chain */  var bflush;           /* set if current block must be flushed */  for (;;) {    /* Make sure that we always have enough lookahead, except     * at the end of the input file. We need MAX_MATCH bytes     * for the next match, plus MIN_MATCH bytes to insert the     * string following the next match.     */    if (s.lookahead < MIN_LOOKAHEAD) {      fill_window(s);      if (s.lookahead < MIN_LOOKAHEAD && flush === Z_NO_FLUSH) {        return BS_NEED_MORE;      }      if (s.lookahead === 0) {        break; /* flush the current block */      }    }    /* Insert the string window[strstart .. strstart+2] in the     * dictionary, and set hash_head to the head of the hash chain:     */    hash_head = 0/*NIL*/;    if (s.lookahead >= MIN_MATCH) {      /*** INSERT_STRING(s, s.strstart, hash_head); ***/      s.ins_h = ((s.ins_h << s.hash_shift) ^ s.window[s.strstart + MIN_MATCH - 1]) & s.hash_mask;      hash_head = s.prev[s.strstart & s.w_mask] = s.head[s.ins_h];      s.head[s.ins_h] = s.strstart;      /***/    }    /* Find the longest match, discarding those <= prev_length.     * At this point we have always match_length < MIN_MATCH     */    if (hash_head !== 0/*NIL*/ && ((s.strstart - hash_head) <= (s.w_size - MIN_LOOKAHEAD))) {      /* To simplify the code, we prevent matches with the string       * of window index 0 (in particular we have to avoid a match       * of the string with itself at the start of the input file).       */      s.match_length = longest_match(s, hash_head);      /* longest_match() sets match_start */    }    if (s.match_length >= MIN_MATCH) {      // check_match(s, s.strstart, s.match_start, s.match_length); // for debug only      /*** _tr_tally_dist(s, s.strstart - s.match_start,                     s.match_length - MIN_MATCH, bflush); ***/      bflush = trees._tr_tally(s, s.strstart - s.match_start, s.match_length - MIN_MATCH);      s.lookahead -= s.match_length;      /* Insert new strings in the hash table only if the match length       * is not too large. This saves time but degrades compression.       */      if (s.match_length <= s.max_lazy_match/*max_insert_length*/ && s.lookahead >= MIN_MATCH) {        s.match_length--; /* string at strstart already in table */        do {          s.strstart++;          /*** INSERT_STRING(s, s.strstart, hash_head); ***/          s.ins_h = ((s.ins_h << s.hash_shift) ^ s.window[s.strstart + MIN_MATCH - 1]) & s.hash_mask;          hash_head = s.prev[s.strstart & s.w_mask] = s.head[s.ins_h];          s.head[s.ins_h] = s.strstart;          /***/          /* strstart never exceeds WSIZE-MAX_MATCH, so there are           * always MIN_MATCH bytes ahead.           */        } while (--s.match_length !== 0);        s.strstart++;      } else      {        s.strstart += s.match_length;        s.match_length = 0;        s.ins_h = s.window[s.strstart];        /* UPDATE_HASH(s, s.ins_h, s.window[s.strstart+1]); */        s.ins_h = ((s.ins_h << s.hash_shift) ^ s.window[s.strstart + 1]) & s.hash_mask;//#if MIN_MATCH != 3//                Call UPDATE_HASH() MIN_MATCH-3 more times//#endif        /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not         * matter since it will be recomputed at next deflate call.         */      }    } else {      /* No match, output a literal byte */      //Tracevv((stderr,"%c", s.window[s.strstart]));      /*** _tr_tally_lit(s, s.window[s.strstart], bflush); ***/      bflush = trees._tr_tally(s, 0, s.window[s.strstart]);      s.lookahead--;      s.strstart++;    }    if (bflush) {      /*** FLUSH_BLOCK(s, 0); ***/      flush_block_only(s, false);      if (s.strm.avail_out === 0) {        return BS_NEED_MORE;      }      /***/    }  }  s.insert = ((s.strstart < (MIN_MATCH - 1)) ? s.strstart : MIN_MATCH - 1);  if (flush === Z_FINISH) {    /*** FLUSH_BLOCK(s, 1); ***/    flush_block_only(s, true);    if (s.strm.avail_out === 0) {      return BS_FINISH_STARTED;    }    /***/    return BS_FINISH_DONE;  }  if (s.last_lit) {    /*** FLUSH_BLOCK(s, 0); ***/    flush_block_only(s, false);    if (s.strm.avail_out === 0) {      return BS_NEED_MORE;    }    /***/  }  return BS_BLOCK_DONE;}/* =========================================================================== * Same as above, but achieves better compression. We use a lazy * evaluation for matches: a match is finally adopted only if there is * no better match at the next window position. */function deflate_slow(s, flush) {  var hash_head;          /* head of hash chain */  var bflush;              /* set if current block must be flushed */  var max_insert;  /* Process the input block. */  for (;;) {    /* Make sure that we always have enough lookahead, except     * at the end of the input file. We need MAX_MATCH bytes     * for the next match, plus MIN_MATCH bytes to insert the     * string following the next match.     */    if (s.lookahead < MIN_LOOKAHEAD) {      fill_window(s);      if (s.lookahead < MIN_LOOKAHEAD && flush === Z_NO_FLUSH) {        return BS_NEED_MORE;      }      if (s.lookahead === 0) { break; } /* flush the current block */    }    /* Insert the string window[strstart .. strstart+2] in the     * dictionary, and set hash_head to the head of the hash chain:     */    hash_head = 0/*NIL*/;    if (s.lookahead >= MIN_MATCH) {      /*** INSERT_STRING(s, s.strstart, hash_head); ***/      s.ins_h = ((s.ins_h << s.hash_shift) ^ s.window[s.strstart + MIN_MATCH - 1]) & s.hash_mask;      hash_head = s.prev[s.strstart & s.w_mask] = s.head[s.ins_h];      s.head[s.ins_h] = s.strstart;      /***/    }    /* Find the longest match, discarding those <= prev_length.     */    s.prev_length = s.match_length;    s.prev_match = s.match_start;    s.match_length = MIN_MATCH - 1;    if (hash_head !== 0/*NIL*/ && s.prev_length < s.max_lazy_match &&        s.strstart - hash_head <= (s.w_size - MIN_LOOKAHEAD)/*MAX_DIST(s)*/) {      /* To simplify the code, we prevent matches with the string       * of window index 0 (in particular we have to avoid a match       * of the string with itself at the start of the input file).       */      s.match_length = longest_match(s, hash_head);      /* longest_match() sets match_start */      if (s.match_length <= 5 &&         (s.strategy === Z_FILTERED || (s.match_length === MIN_MATCH && s.strstart - s.match_start > 4096/*TOO_FAR*/))) {        /* If prev_match is also MIN_MATCH, match_start is garbage         * but we will ignore the current match anyway.         */        s.match_length = MIN_MATCH - 1;      }    }    /* If there was a match at the previous step and the current     * match is not better, output the previous match:     */    if (s.prev_length >= MIN_MATCH && s.match_length <= s.prev_length) {      max_insert = s.strstart + s.lookahead - MIN_MATCH;      /* Do not insert strings in hash table beyond this. */      //check_match(s, s.strstart-1, s.prev_match, s.prev_length);      /***_tr_tally_dist(s, s.strstart - 1 - s.prev_match,                     s.prev_length - MIN_MATCH, bflush);***/      bflush = trees._tr_tally(s, s.strstart - 1 - s.prev_match, s.prev_length - MIN_MATCH);      /* Insert in hash table all strings up to the end of the match.       * strstart-1 and strstart are already inserted. If there is not       * enough lookahead, the last two strings are not inserted in       * the hash table.       */      s.lookahead -= s.prev_length - 1;      s.prev_length -= 2;      do {        if (++s.strstart <= max_insert) {          /*** INSERT_STRING(s, s.strstart, hash_head); ***/          s.ins_h = ((s.ins_h << s.hash_shift) ^ s.window[s.strstart + MIN_MATCH - 1]) & s.hash_mask;          hash_head = s.prev[s.strstart & s.w_mask] = s.head[s.ins_h];          s.head[s.ins_h] = s.strstart;          /***/        }      } while (--s.prev_length !== 0);      s.match_available = 0;      s.match_length = MIN_MATCH - 1;      s.strstart++;      if (bflush) {        /*** FLUSH_BLOCK(s, 0); ***/        flush_block_only(s, false);        if (s.strm.avail_out === 0) {          return BS_NEED_MORE;        }        /***/      }    } else if (s.match_available) {      /* If there was no match at the previous position, output a       * single literal. If there was a match but the current match       * is longer, truncate the previous match to a single literal.       */      //Tracevv((stderr,"%c", s->window[s->strstart-1]));      /*** _tr_tally_lit(s, s.window[s.strstart-1], bflush); ***/      bflush = trees._tr_tally(s, 0, s.window[s.strstart - 1]);      if (bflush) {        /*** FLUSH_BLOCK_ONLY(s, 0) ***/        flush_block_only(s, false);        /***/      }      s.strstart++;      s.lookahead--;      if (s.strm.avail_out === 0) {        return BS_NEED_MORE;      }    } else {      /* There is no previous match to compare with, wait for       * the next step to decide.       */      s.match_available = 1;      s.strstart++;      s.lookahead--;    }  }  //Assert (flush != Z_NO_FLUSH, "no flush?");  if (s.match_available) {    //Tracevv((stderr,"%c", s->window[s->strstart-1]));    /*** _tr_tally_lit(s, s.window[s.strstart-1], bflush); ***/    bflush = trees._tr_tally(s, 0, s.window[s.strstart - 1]);    s.match_available = 0;  }  s.insert = s.strstart < MIN_MATCH - 1 ? s.strstart : MIN_MATCH - 1;  if (flush === Z_FINISH) {    /*** FLUSH_BLOCK(s, 1); ***/    flush_block_only(s, true);    if (s.strm.avail_out === 0) {      return BS_FINISH_STARTED;    }    /***/    return BS_FINISH_DONE;  }  if (s.last_lit) {    /*** FLUSH_BLOCK(s, 0); ***/    flush_block_only(s, false);    if (s.strm.avail_out === 0) {      return BS_NEED_MORE;    }    /***/  }  return BS_BLOCK_DONE;}/* =========================================================================== * For Z_RLE, simply look for runs of bytes, generate matches only of distance * one.  Do not maintain a hash table.  (It will be regenerated if this run of * deflate switches away from Z_RLE.) */function deflate_rle(s, flush) {  var bflush;            /* set if current block must be flushed */  var prev;              /* byte at distance one to match */  var scan, strend;      /* scan goes up to strend for length of run */  var _win = s.window;  for (;;) {    /* Make sure that we always have enough lookahead, except     * at the end of the input file. We need MAX_MATCH bytes     * for the longest run, plus one for the unrolled loop.     */    if (s.lookahead <= MAX_MATCH) {      fill_window(s);      if (s.lookahead <= MAX_MATCH && flush === Z_NO_FLUSH) {        return BS_NEED_MORE;      }      if (s.lookahead === 0) { break; } /* flush the current block */    }    /* See how many times the previous byte repeats */    s.match_length = 0;    if (s.lookahead >= MIN_MATCH && s.strstart > 0) {      scan = s.strstart - 1;      prev = _win[scan];      if (prev === _win[++scan] && prev === _win[++scan] && prev === _win[++scan]) {        strend = s.strstart + MAX_MATCH;        do {          /*jshint noempty:false*/        } while (prev === _win[++scan] && prev === _win[++scan] &&                 prev === _win[++scan] && prev === _win[++scan] &&                 prev === _win[++scan] && prev === _win[++scan] &&                 prev === _win[++scan] && prev === _win[++scan] &&                 scan < strend);        s.match_length = MAX_MATCH - (strend - scan);        if (s.match_length > s.lookahead) {          s.match_length = s.lookahead;        }      }      //Assert(scan <= s->window+(uInt)(s->window_size-1), "wild scan");    }    /* Emit match if have run of MIN_MATCH or longer, else emit literal */    if (s.match_length >= MIN_MATCH) {      //check_match(s, s.strstart, s.strstart - 1, s.match_length);      /*** _tr_tally_dist(s, 1, s.match_length - MIN_MATCH, bflush); ***/      bflush = trees._tr_tally(s, 1, s.match_length - MIN_MATCH);      s.lookahead -= s.match_length;      s.strstart += s.match_length;      s.match_length = 0;    } else {      /* No match, output a literal byte */      //Tracevv((stderr,"%c", s->window[s->strstart]));      /*** _tr_tally_lit(s, s.window[s.strstart], bflush); ***/      bflush = trees._tr_tally(s, 0, s.window[s.strstart]);      s.lookahead--;      s.strstart++;    }    if (bflush) {      /*** FLUSH_BLOCK(s, 0); ***/      flush_block_only(s, false);      if (s.strm.avail_out === 0) {        return BS_NEED_MORE;      }      /***/    }  }  s.insert = 0;  if (flush === Z_FINISH) {    /*** FLUSH_BLOCK(s, 1); ***/    flush_block_only(s, true);    if (s.strm.avail_out === 0) {      return BS_FINISH_STARTED;    }    /***/    return BS_FINISH_DONE;  }  if (s.last_lit) {    /*** FLUSH_BLOCK(s, 0); ***/    flush_block_only(s, false);    if (s.strm.avail_out === 0) {      return BS_NEED_MORE;    }    /***/  }  return BS_BLOCK_DONE;}/* =========================================================================== * For Z_HUFFMAN_ONLY, do not look for matches.  Do not maintain a hash table. * (It will be regenerated if this run of deflate switches away from Huffman.) */function deflate_huff(s, flush) {  var bflush;             /* set if current block must be flushed */  for (;;) {    /* Make sure that we have a literal to write. */    if (s.lookahead === 0) {      fill_window(s);      if (s.lookahead === 0) {        if (flush === Z_NO_FLUSH) {          return BS_NEED_MORE;        }        break;      /* flush the current block */      }    }    /* Output a literal byte */    s.match_length = 0;    //Tracevv((stderr,"%c", s->window[s->strstart]));    /*** _tr_tally_lit(s, s.window[s.strstart], bflush); ***/    bflush = trees._tr_tally(s, 0, s.window[s.strstart]);    s.lookahead--;    s.strstart++;    if (bflush) {      /*** FLUSH_BLOCK(s, 0); ***/      flush_block_only(s, false);      if (s.strm.avail_out === 0) {        return BS_NEED_MORE;      }      /***/    }  }  s.insert = 0;  if (flush === Z_FINISH) {    /*** FLUSH_BLOCK(s, 1); ***/    flush_block_only(s, true);    if (s.strm.avail_out === 0) {      return BS_FINISH_STARTED;    }    /***/    return BS_FINISH_DONE;  }  if (s.last_lit) {    /*** FLUSH_BLOCK(s, 0); ***/    flush_block_only(s, false);    if (s.strm.avail_out === 0) {      return BS_NEED_MORE;    }    /***/  }  return BS_BLOCK_DONE;}/* Values for max_lazy_match, good_match and max_chain_length, depending on * the desired pack level (0..9). The values given below have been tuned to * exclude worst case performance for pathological files. Better values may be * found for specific files. */function Config(good_length, max_lazy, nice_length, max_chain, func) {  this.good_length = good_length;  this.max_lazy = max_lazy;  this.nice_length = nice_length;  this.max_chain = max_chain;  this.func = func;}var configuration_table;configuration_table = [  /*      good lazy nice chain */  new Config(0, 0, 0, 0, deflate_stored),          /* 0 store only */  new Config(4, 4, 8, 4, deflate_fast),            /* 1 max speed, no lazy matches */  new Config(4, 5, 16, 8, deflate_fast),           /* 2 */  new Config(4, 6, 32, 32, deflate_fast),          /* 3 */  new Config(4, 4, 16, 16, deflate_slow),          /* 4 lazy matches */  new Config(8, 16, 32, 32, deflate_slow),         /* 5 */  new Config(8, 16, 128, 128, deflate_slow),       /* 6 */  new Config(8, 32, 128, 256, deflate_slow),       /* 7 */  new Config(32, 128, 258, 1024, deflate_slow),    /* 8 */  new Config(32, 258, 258, 4096, deflate_slow)     /* 9 max compression */];/* =========================================================================== * Initialize the "longest match" routines for a new zlib stream */function lm_init(s) {  s.window_size = 2 * s.w_size;  /*** CLEAR_HASH(s); ***/  zero(s.head); // Fill with NIL (= 0);  /* Set the default configuration parameters:   */  s.max_lazy_match = configuration_table[s.level].max_lazy;  s.good_match = configuration_table[s.level].good_length;  s.nice_match = configuration_table[s.level].nice_length;  s.max_chain_length = configuration_table[s.level].max_chain;  s.strstart = 0;  s.block_start = 0;  s.lookahead = 0;  s.insert = 0;  s.match_length = s.prev_length = MIN_MATCH - 1;  s.match_available = 0;  s.ins_h = 0;}function DeflateState() {  this.strm = null;            /* pointer back to this zlib stream */  this.status = 0;            /* as the name implies */  this.pending_buf = null;      /* output still pending */  this.pending_buf_size = 0;  /* size of pending_buf */  this.pending_out = 0;       /* next pending byte to output to the stream */  this.pending = 0;           /* nb of bytes in the pending buffer */  this.wrap = 0;              /* bit 0 true for zlib, bit 1 true for gzip */  this.gzhead = null;         /* gzip header information to write */  this.gzindex = 0;           /* where in extra, name, or comment */  this.method = Z_DEFLATED; /* can only be DEFLATED */  this.last_flush = -1;   /* value of flush param for previous deflate call */  this.w_size = 0;  /* LZ77 window size (32K by default) */  this.w_bits = 0;  /* log2(w_size)  (8..16) */  this.w_mask = 0;  /* w_size - 1 */  this.window = null;  /* Sliding window. Input bytes are read into the second half of the window,   * and move to the first half later to keep a dictionary of at least wSize   * bytes. With this organization, matches are limited to a distance of   * wSize-MAX_MATCH bytes, but this ensures that IO is always   * performed with a length multiple of the block size.   */  this.window_size = 0;  /* Actual size of window: 2*wSize, except when the user input buffer   * is directly used as sliding window.   */  this.prev = null;  /* Link to older string with same hash index. To limit the size of this   * array to 64K, this link is maintained only for the last 32K strings.   * An index in this array is thus a window index modulo 32K.   */  this.head = null;   /* Heads of the hash chains or NIL. */  this.ins_h = 0;       /* hash index of string to be inserted */  this.hash_size = 0;   /* number of elements in hash table */  this.hash_bits = 0;   /* log2(hash_size) */  this.hash_mask = 0;   /* hash_size-1 */  this.hash_shift = 0;  /* Number of bits by which ins_h must be shifted at each input   * step. It must be such that after MIN_MATCH steps, the oldest   * byte no longer takes part in the hash key, that is:   *   hash_shift * MIN_MATCH >= hash_bits   */  this.block_start = 0;  /* Window position at the beginning of the current output block. Gets   * negative when the window is moved backwards.   */  this.match_length = 0;      /* length of best match */  this.prev_match = 0;        /* previous match */  this.match_available = 0;   /* set if previous match exists */  this.strstart = 0;          /* start of string to insert */  this.match_start = 0;       /* start of matching string */  this.lookahead = 0;         /* number of valid bytes ahead in window */  this.prev_length = 0;  /* Length of the best match at previous step. Matches not greater than this   * are discarded. This is used in the lazy match evaluation.   */  this.max_chain_length = 0;  /* To speed up deflation, hash chains are never searched beyond this   * length.  A higher limit improves compression ratio but degrades the   * speed.   */  this.max_lazy_match = 0;  /* Attempt to find a better match only when the current match is strictly   * smaller than this value. This mechanism is used only for compression   * levels >= 4.   */  // That's alias to max_lazy_match, don't use directly  //this.max_insert_length = 0;  /* Insert new strings in the hash table only if the match length is not   * greater than this length. This saves time but degrades compression.   * max_insert_length is used only for compression levels <= 3.   */  this.level = 0;     /* compression level (1..9) */  this.strategy = 0;  /* favor or force Huffman coding*/  this.good_match = 0;  /* Use a faster search when the previous match is longer than this */  this.nice_match = 0; /* Stop searching when current match exceeds this */              /* used by trees.c: */  /* Didn't use ct_data typedef below to suppress compiler warning */  // struct ct_data_s dyn_ltree[HEAP_SIZE];   /* literal and length tree */  // struct ct_data_s dyn_dtree[2*D_CODES+1]; /* distance tree */  // struct ct_data_s bl_tree[2*BL_CODES+1];  /* Huffman tree for bit lengths */  // Use flat array of DOUBLE size, with interleaved fata,  // because JS does not support effective  this.dyn_ltree  = new utils.Buf16(HEAP_SIZE * 2);  this.dyn_dtree  = new utils.Buf16((2 * D_CODES + 1) * 2);  this.bl_tree    = new utils.Buf16((2 * BL_CODES + 1) * 2);  zero(this.dyn_ltree);  zero(this.dyn_dtree);  zero(this.bl_tree);  this.l_desc   = null;         /* desc. for literal tree */  this.d_desc   = null;         /* desc. for distance tree */  this.bl_desc  = null;         /* desc. for bit length tree */  //ush bl_count[MAX_BITS+1];  this.bl_count = new utils.Buf16(MAX_BITS + 1);  /* number of codes at each bit length for an optimal tree */  //int heap[2*L_CODES+1];      /* heap used to build the Huffman trees */  this.heap = new utils.Buf16(2 * L_CODES + 1);  /* heap used to build the Huffman trees */  zero(this.heap);  this.heap_len = 0;               /* number of elements in the heap */  this.heap_max = 0;               /* element of largest frequency */  /* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.   * The same heap array is used to build all trees.   */  this.depth = new utils.Buf16(2 * L_CODES + 1); //uch depth[2*L_CODES+1];  zero(this.depth);  /* Depth of each subtree used as tie breaker for trees of equal frequency   */  this.l_buf = 0;          /* buffer index for literals or lengths */  this.lit_bufsize = 0;  /* Size of match buffer for literals/lengths.  There are 4 reasons for   * limiting lit_bufsize to 64K:   *   - frequencies can be kept in 16 bit counters   *   - if compression is not successful for the first block, all input   *     data is still in the window so we can still emit a stored block even   *     when input comes from standard input.  (This can also be done for   *     all blocks if lit_bufsize is not greater than 32K.)   *   - if compression is not successful for a file smaller than 64K, we can   *     even emit a stored file instead of a stored block (saving 5 bytes).   *     This is applicable only for zip (not gzip or zlib).   *   - creating new Huffman trees less frequently may not provide fast   *     adaptation to changes in the input data statistics. (Take for   *     example a binary file with poorly compressible code followed by   *     a highly compressible string table.) Smaller buffer sizes give   *     fast adaptation but have of course the overhead of transmitting   *     trees more frequently.   *   - I can't count above 4   */  this.last_lit = 0;      /* running index in l_buf */  this.d_buf = 0;  /* Buffer index for distances. To simplify the code, d_buf and l_buf have   * the same number of elements. To use different lengths, an extra flag   * array would be necessary.   */  this.opt_len = 0;       /* bit length of current block with optimal trees */  this.static_len = 0;    /* bit length of current block with static trees */  this.matches = 0;       /* number of string matches in current block */  this.insert = 0;        /* bytes at end of window left to insert */  this.bi_buf = 0;  /* Output buffer. bits are inserted starting at the bottom (least   * significant bits).   */  this.bi_valid = 0;  /* Number of valid bits in bi_buf.  All bits above the last valid bit   * are always zero.   */  // Used for window memory init. We safely ignore it for JS. That makes  // sense only for pointers and memory check tools.  //this.high_water = 0;  /* High water mark offset in window for initialized bytes -- bytes above   * this are set to zero in order to avoid memory check warnings when   * longest match routines access bytes past the input.  This is then   * updated to the new high water mark.   */}function deflateResetKeep(strm) {  var s;  if (!strm || !strm.state) {    return err(strm, Z_STREAM_ERROR);  }  strm.total_in = strm.total_out = 0;  strm.data_type = Z_UNKNOWN;  s = strm.state;  s.pending = 0;  s.pending_out = 0;  if (s.wrap < 0) {    s.wrap = -s.wrap;    /* was made negative by deflate(..., Z_FINISH); */  }  s.status = (s.wrap ? INIT_STATE : BUSY_STATE);  strm.adler = (s.wrap === 2) ?    0  // crc32(0, Z_NULL, 0)  :    1; // adler32(0, Z_NULL, 0)  s.last_flush = Z_NO_FLUSH;  trees._tr_init(s);  return Z_OK;}function deflateReset(strm) {  var ret = deflateResetKeep(strm);  if (ret === Z_OK) {    lm_init(strm.state);  }  return ret;}function deflateSetHeader(strm, head) {  if (!strm || !strm.state) { return Z_STREAM_ERROR; }  if (strm.state.wrap !== 2) { return Z_STREAM_ERROR; }  strm.state.gzhead = head;  return Z_OK;}function deflateInit2(strm, level, method, windowBits, memLevel, strategy) {  if (!strm) { // === Z_NULL    return Z_STREAM_ERROR;  }  var wrap = 1;  if (level === Z_DEFAULT_COMPRESSION) {    level = 6;  }  if (windowBits < 0) { /* suppress zlib wrapper */    wrap = 0;    windowBits = -windowBits;  }  else if (windowBits > 15) {    wrap = 2;           /* write gzip wrapper instead */    windowBits -= 16;  }  if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method !== Z_DEFLATED ||    windowBits < 8 || windowBits > 15 || level < 0 || level > 9 ||    strategy < 0 || strategy > Z_FIXED) {    return err(strm, Z_STREAM_ERROR);  }  if (windowBits === 8) {    windowBits = 9;  }  /* until 256-byte window bug fixed */  var s = new DeflateState();  strm.state = s;  s.strm = strm;  s.wrap = wrap;  s.gzhead = null;  s.w_bits = windowBits;  s.w_size = 1 << s.w_bits;  s.w_mask = s.w_size - 1;  s.hash_bits = memLevel + 7;  s.hash_size = 1 << s.hash_bits;  s.hash_mask = s.hash_size - 1;  s.hash_shift = ~~((s.hash_bits + MIN_MATCH - 1) / MIN_MATCH);  s.window = new utils.Buf8(s.w_size * 2);  s.head = new utils.Buf16(s.hash_size);  s.prev = new utils.Buf16(s.w_size);  // Don't need mem init magic for JS.  //s.high_water = 0;  /* nothing written to s->window yet */  s.lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */  s.pending_buf_size = s.lit_bufsize * 4;  //overlay = (ushf *) ZALLOC(strm, s->lit_bufsize, sizeof(ush)+2);  //s->pending_buf = (uchf *) overlay;  s.pending_buf = new utils.Buf8(s.pending_buf_size);  // It is offset from `s.pending_buf` (size is `s.lit_bufsize * 2`)  //s->d_buf = overlay + s->lit_bufsize/sizeof(ush);  s.d_buf = 1 * s.lit_bufsize;  //s->l_buf = s->pending_buf + (1+sizeof(ush))*s->lit_bufsize;  s.l_buf = (1 + 2) * s.lit_bufsize;  s.level = level;  s.strategy = strategy;  s.method = method;  return deflateReset(strm);}function deflateInit(strm, level) {  return deflateInit2(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL, Z_DEFAULT_STRATEGY);}function deflate(strm, flush) {  var old_flush, s;  var beg, val; // for gzip header write only  if (!strm || !strm.state ||    flush > Z_BLOCK || flush < 0) {    return strm ? err(strm, Z_STREAM_ERROR) : Z_STREAM_ERROR;  }  s = strm.state;  if (!strm.output ||      (!strm.input && strm.avail_in !== 0) ||      (s.status === FINISH_STATE && flush !== Z_FINISH)) {    return err(strm, (strm.avail_out === 0) ? Z_BUF_ERROR : Z_STREAM_ERROR);  }  s.strm = strm; /* just in case */  old_flush = s.last_flush;  s.last_flush = flush;  /* Write the header */  if (s.status === INIT_STATE) {    if (s.wrap === 2) { // GZIP header      strm.adler = 0;  //crc32(0L, Z_NULL, 0);      put_byte(s, 31);      put_byte(s, 139);      put_byte(s, 8);      if (!s.gzhead) { // s->gzhead == Z_NULL        put_byte(s, 0);        put_byte(s, 0);        put_byte(s, 0);        put_byte(s, 0);        put_byte(s, 0);        put_byte(s, s.level === 9 ? 2 :                    (s.strategy >= Z_HUFFMAN_ONLY || s.level < 2 ?                     4 : 0));        put_byte(s, OS_CODE);        s.status = BUSY_STATE;      }      else {        put_byte(s, (s.gzhead.text ? 1 : 0) +                    (s.gzhead.hcrc ? 2 : 0) +                    (!s.gzhead.extra ? 0 : 4) +                    (!s.gzhead.name ? 0 : 8) +                    (!s.gzhead.comment ? 0 : 16)                );        put_byte(s, s.gzhead.time & 0xff);        put_byte(s, (s.gzhead.time >> 8) & 0xff);        put_byte(s, (s.gzhead.time >> 16) & 0xff);        put_byte(s, (s.gzhead.time >> 24) & 0xff);        put_byte(s, s.level === 9 ? 2 :                    (s.strategy >= Z_HUFFMAN_ONLY || s.level < 2 ?                     4 : 0));        put_byte(s, s.gzhead.os & 0xff);        if (s.gzhead.extra && s.gzhead.extra.length) {          put_byte(s, s.gzhead.extra.length & 0xff);          put_byte(s, (s.gzhead.extra.length >> 8) & 0xff);        }        if (s.gzhead.hcrc) {          strm.adler = crc32(strm.adler, s.pending_buf, s.pending, 0);        }        s.gzindex = 0;        s.status = EXTRA_STATE;      }    }    else // DEFLATE header    {      var header = (Z_DEFLATED + ((s.w_bits - 8) << 4)) << 8;      var level_flags = -1;      if (s.strategy >= Z_HUFFMAN_ONLY || s.level < 2) {        level_flags = 0;      } else if (s.level < 6) {        level_flags = 1;      } else if (s.level === 6) {        level_flags = 2;      } else {        level_flags = 3;      }      header |= (level_flags << 6);      if (s.strstart !== 0) { header |= PRESET_DICT; }      header += 31 - (header % 31);      s.status = BUSY_STATE;      putShortMSB(s, header);      /* Save the adler32 of the preset dictionary: */      if (s.strstart !== 0) {        putShortMSB(s, strm.adler >>> 16);        putShortMSB(s, strm.adler & 0xffff);      }      strm.adler = 1; // adler32(0L, Z_NULL, 0);    }  }//#ifdef GZIP  if (s.status === EXTRA_STATE) {    if (s.gzhead.extra/* != Z_NULL*/) {      beg = s.pending;  /* start of bytes to update crc */      while (s.gzindex < (s.gzhead.extra.length & 0xffff)) {        if (s.pending === s.pending_buf_size) {          if (s.gzhead.hcrc && s.pending > beg) {            strm.adler = crc32(strm.adler, s.pending_buf, s.pending - beg, beg);          }          flush_pending(strm);          beg = s.pending;          if (s.pending === s.pending_buf_size) {            break;          }        }        put_byte(s, s.gzhead.extra[s.gzindex] & 0xff);        s.gzindex++;      }      if (s.gzhead.hcrc && s.pending > beg) {        strm.adler = crc32(strm.adler, s.pending_buf, s.pending - beg, beg);      }      if (s.gzindex === s.gzhead.extra.length) {        s.gzindex = 0;        s.status = NAME_STATE;      }    }    else {      s.status = NAME_STATE;    }  }  if (s.status === NAME_STATE) {    if (s.gzhead.name/* != Z_NULL*/) {      beg = s.pending;  /* start of bytes to update crc */      //int val;      do {        if (s.pending === s.pending_buf_size) {          if (s.gzhead.hcrc && s.pending > beg) {            strm.adler = crc32(strm.adler, s.pending_buf, s.pending - beg, beg);          }          flush_pending(strm);          beg = s.pending;          if (s.pending === s.pending_buf_size) {            val = 1;            break;          }        }        // JS specific: little magic to add zero terminator to end of string        if (s.gzindex < s.gzhead.name.length) {          val = s.gzhead.name.charCodeAt(s.gzindex++) & 0xff;        } else {          val = 0;        }        put_byte(s, val);      } while (val !== 0);      if (s.gzhead.hcrc && s.pending > beg) {        strm.adler = crc32(strm.adler, s.pending_buf, s.pending - beg, beg);      }      if (val === 0) {        s.gzindex = 0;        s.status = COMMENT_STATE;      }    }    else {      s.status = COMMENT_STATE;    }  }  if (s.status === COMMENT_STATE) {    if (s.gzhead.comment/* != Z_NULL*/) {      beg = s.pending;  /* start of bytes to update crc */      //int val;      do {        if (s.pending === s.pending_buf_size) {          if (s.gzhead.hcrc && s.pending > beg) {            strm.adler = crc32(strm.adler, s.pending_buf, s.pending - beg, beg);          }          flush_pending(strm);          beg = s.pending;          if (s.pending === s.pending_buf_size) {            val = 1;            break;          }        }        // JS specific: little magic to add zero terminator to end of string        if (s.gzindex < s.gzhead.comment.length) {          val = s.gzhead.comment.charCodeAt(s.gzindex++) & 0xff;        } else {          val = 0;        }        put_byte(s, val);      } while (val !== 0);      if (s.gzhead.hcrc && s.pending > beg) {        strm.adler = crc32(strm.adler, s.pending_buf, s.pending - beg, beg);      }      if (val === 0) {        s.status = HCRC_STATE;      }    }    else {      s.status = HCRC_STATE;    }  }  if (s.status === HCRC_STATE) {    if (s.gzhead.hcrc) {      if (s.pending + 2 > s.pending_buf_size) {        flush_pending(strm);      }      if (s.pending + 2 <= s.pending_buf_size) {        put_byte(s, strm.adler & 0xff);        put_byte(s, (strm.adler >> 8) & 0xff);        strm.adler = 0; //crc32(0L, Z_NULL, 0);        s.status = BUSY_STATE;      }    }    else {      s.status = BUSY_STATE;    }  }//#endif  /* Flush as much pending output as possible */  if (s.pending !== 0) {    flush_pending(strm);    if (strm.avail_out === 0) {      /* Since avail_out is 0, deflate will be called again with       * more output space, but possibly with both pending and       * avail_in equal to zero. There won't be anything to do,       * but this is not an error situation so make sure we       * return OK instead of BUF_ERROR at next call of deflate:       */      s.last_flush = -1;      return Z_OK;    }    /* Make sure there is something to do and avoid duplicate consecutive     * flushes. For repeated and useless calls with Z_FINISH, we keep     * returning Z_STREAM_END instead of Z_BUF_ERROR.     */  } else if (strm.avail_in === 0 && rank(flush) <= rank(old_flush) &&    flush !== Z_FINISH) {    return err(strm, Z_BUF_ERROR);  }  /* User must not provide more input after the first FINISH: */  if (s.status === FINISH_STATE && strm.avail_in !== 0) {    return err(strm, Z_BUF_ERROR);  }  /* Start a new block or continue the current one.   */  if (strm.avail_in !== 0 || s.lookahead !== 0 ||    (flush !== Z_NO_FLUSH && s.status !== FINISH_STATE)) {    var bstate = (s.strategy === Z_HUFFMAN_ONLY) ? deflate_huff(s, flush) :      (s.strategy === Z_RLE ? deflate_rle(s, flush) :        configuration_table[s.level].func(s, flush));    if (bstate === BS_FINISH_STARTED || bstate === BS_FINISH_DONE) {      s.status = FINISH_STATE;    }    if (bstate === BS_NEED_MORE || bstate === BS_FINISH_STARTED) {      if (strm.avail_out === 0) {        s.last_flush = -1;        /* avoid BUF_ERROR next call, see above */      }      return Z_OK;      /* If flush != Z_NO_FLUSH && avail_out == 0, the next call       * of deflate should use the same flush parameter to make sure       * that the flush is complete. So we don't have to output an       * empty block here, this will be done at next call. This also       * ensures that for a very small output buffer, we emit at most       * one empty block.       */    }    if (bstate === BS_BLOCK_DONE) {      if (flush === Z_PARTIAL_FLUSH) {        trees._tr_align(s);      }      else if (flush !== Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */        trees._tr_stored_block(s, 0, 0, false);        /* For a full flush, this empty block will be recognized         * as a special marker by inflate_sync().         */        if (flush === Z_FULL_FLUSH) {          /*** CLEAR_HASH(s); ***/             /* forget history */          zero(s.head); // Fill with NIL (= 0);          if (s.lookahead === 0) {            s.strstart = 0;            s.block_start = 0;            s.insert = 0;          }        }      }      flush_pending(strm);      if (strm.avail_out === 0) {        s.last_flush = -1; /* avoid BUF_ERROR at next call, see above */        return Z_OK;      }    }  }  //Assert(strm->avail_out > 0, "bug2");  //if (strm.avail_out <= 0) { throw new Error("bug2");}  if (flush !== Z_FINISH) { return Z_OK; }  if (s.wrap <= 0) { return Z_STREAM_END; }  /* Write the trailer */  if (s.wrap === 2) {    put_byte(s, strm.adler & 0xff);    put_byte(s, (strm.adler >> 8) & 0xff);    put_byte(s, (strm.adler >> 16) & 0xff);    put_byte(s, (strm.adler >> 24) & 0xff);    put_byte(s, strm.total_in & 0xff);    put_byte(s, (strm.total_in >> 8) & 0xff);    put_byte(s, (strm.total_in >> 16) & 0xff);    put_byte(s, (strm.total_in >> 24) & 0xff);  }  else  {    putShortMSB(s, strm.adler >>> 16);    putShortMSB(s, strm.adler & 0xffff);  }  flush_pending(strm);  /* If avail_out is zero, the application will call deflate again   * to flush the rest.   */  if (s.wrap > 0) { s.wrap = -s.wrap; }  /* write the trailer only once! */  return s.pending !== 0 ? Z_OK : Z_STREAM_END;}function deflateEnd(strm) {  var status;  if (!strm/*== Z_NULL*/ || !strm.state/*== Z_NULL*/) {    return Z_STREAM_ERROR;  }  status = strm.state.status;  if (status !== INIT_STATE &&    status !== EXTRA_STATE &&    status !== NAME_STATE &&    status !== COMMENT_STATE &&    status !== HCRC_STATE &&    status !== BUSY_STATE &&    status !== FINISH_STATE  ) {    return err(strm, Z_STREAM_ERROR);  }  strm.state = null;  return status === BUSY_STATE ? err(strm, Z_DATA_ERROR) : Z_OK;}/* ========================================================================= * Initializes the compression dictionary from the given byte * sequence without producing any compressed output. */function deflateSetDictionary(strm, dictionary) {  var dictLength = dictionary.length;  var s;  var str, n;  var wrap;  var avail;  var next;  var input;  var tmpDict;  if (!strm/*== Z_NULL*/ || !strm.state/*== Z_NULL*/) {    return Z_STREAM_ERROR;  }  s = strm.state;  wrap = s.wrap;  if (wrap === 2 || (wrap === 1 && s.status !== INIT_STATE) || s.lookahead) {    return Z_STREAM_ERROR;  }  /* when using zlib wrappers, compute Adler-32 for provided dictionary */  if (wrap === 1) {    /* adler32(strm->adler, dictionary, dictLength); */    strm.adler = adler32(strm.adler, dictionary, dictLength, 0);  }  s.wrap = 0;   /* avoid computing Adler-32 in read_buf */  /* if dictionary would fill window, just replace the history */  if (dictLength >= s.w_size) {    if (wrap === 0) {            /* already empty otherwise */      /*** CLEAR_HASH(s); ***/      zero(s.head); // Fill with NIL (= 0);      s.strstart = 0;      s.block_start = 0;      s.insert = 0;    }    /* use the tail */    // dictionary = dictionary.slice(dictLength - s.w_size);    tmpDict = new utils.Buf8(s.w_size);    utils.arraySet(tmpDict, dictionary, dictLength - s.w_size, s.w_size, 0);    dictionary = tmpDict;    dictLength = s.w_size;  }  /* insert dictionary into window and hash */  avail = strm.avail_in;  next = strm.next_in;  input = strm.input;  strm.avail_in = dictLength;  strm.next_in = 0;  strm.input = dictionary;  fill_window(s);  while (s.lookahead >= MIN_MATCH) {    str = s.strstart;    n = s.lookahead - (MIN_MATCH - 1);    do {      /* UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]); */      s.ins_h = ((s.ins_h << s.hash_shift) ^ s.window[str + MIN_MATCH - 1]) & s.hash_mask;      s.prev[str & s.w_mask] = s.head[s.ins_h];      s.head[s.ins_h] = str;      str++;    } while (--n);    s.strstart = str;    s.lookahead = MIN_MATCH - 1;    fill_window(s);  }  s.strstart += s.lookahead;  s.block_start = s.strstart;  s.insert = s.lookahead;  s.lookahead = 0;  s.match_length = s.prev_length = MIN_MATCH - 1;  s.match_available = 0;  strm.next_in = next;  strm.input = input;  strm.avail_in = avail;  s.wrap = wrap;  return Z_OK;}exports.deflateInit = deflateInit;exports.deflateInit2 = deflateInit2;exports.deflateReset = deflateReset;exports.deflateResetKeep = deflateResetKeep;exports.deflateSetHeader = deflateSetHeader;exports.deflate = deflate;exports.deflateEnd = deflateEnd;exports.deflateSetDictionary = deflateSetDictionary;exports.deflateInfo = 'pako deflate (from Nodeca project)';/* Not implementedexports.deflateBound = deflateBound;exports.deflateCopy = deflateCopy;exports.deflateParams = deflateParams;exports.deflatePending = deflatePending;exports.deflatePrime = deflatePrime;exports.deflateTune = deflateTune;*/},{"../utils/common":1,"./adler32":3,"./crc32":4,"./messages":6,"./trees":7}],6:[function(require,module,exports){'use strict';module.exports = {  2:      'need dictionary',     /* Z_NEED_DICT       2  */  1:      'stream end',          /* Z_STREAM_END      1  */  0:      '',                    /* Z_OK              0  */  '-1':   'file error',          /* Z_ERRNO         (-1) */  '-2':   'stream error',        /* Z_STREAM_ERROR  (-2) */  '-3':   'data error',          /* Z_DATA_ERROR    (-3) */  '-4':   'insufficient memory', /* Z_MEM_ERROR     (-4) */  '-5':   'buffer error',        /* Z_BUF_ERROR     (-5) */  '-6':   'incompatible version' /* Z_VERSION_ERROR (-6) */};},{}],7:[function(require,module,exports){'use strict';var utils = require('../utils/common');/* Public constants ==========================================================*//* ===========================================================================*///var Z_FILTERED          = 1;//var Z_HUFFMAN_ONLY      = 2;//var Z_RLE               = 3;var Z_FIXED               = 4;//var Z_DEFAULT_STRATEGY  = 0;/* Possible values of the data_type field (though see inflate()) */var Z_BINARY              = 0;var Z_TEXT                = 1;//var Z_ASCII             = 1; // = Z_TEXTvar Z_UNKNOWN             = 2;/*============================================================================*/function zero(buf) { var len = buf.length; while (--len >= 0) { buf[len] = 0; } }// From zutil.hvar STORED_BLOCK = 0;var STATIC_TREES = 1;var DYN_TREES    = 2;/* The three kinds of block type */var MIN_MATCH    = 3;var MAX_MATCH    = 258;/* The minimum and maximum match lengths */// From deflate.h/* =========================================================================== * Internal compression state. */var LENGTH_CODES  = 29;/* number of length codes, not counting the special END_BLOCK code */var LITERALS      = 256;/* number of literal bytes 0..255 */var L_CODES       = LITERALS + 1 + LENGTH_CODES;/* number of Literal or Length codes, including the END_BLOCK code */var D_CODES       = 30;/* number of distance codes */var BL_CODES      = 19;/* number of codes used to transfer the bit lengths */var HEAP_SIZE     = 2 * L_CODES + 1;/* maximum heap size */var MAX_BITS      = 15;/* All codes must not exceed MAX_BITS bits */var Buf_size      = 16;/* size of bit buffer in bi_buf *//* =========================================================================== * Constants */var MAX_BL_BITS = 7;/* Bit length codes must not exceed MAX_BL_BITS bits */var END_BLOCK   = 256;/* end of block literal code */var REP_3_6     = 16;/* repeat previous bit length 3-6 times (2 bits of repeat count) */var REPZ_3_10   = 17;/* repeat a zero length 3-10 times  (3 bits of repeat count) */var REPZ_11_138 = 18;/* repeat a zero length 11-138 times  (7 bits of repeat count) *//* eslint-disable comma-spacing,array-bracket-spacing */var extra_lbits =   /* extra bits for each length code */  [0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0];var extra_dbits =   /* extra bits for each distance code */  [0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13];var extra_blbits =  /* extra bits for each bit length code */  [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7];var bl_order =  [16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15];/* eslint-enable comma-spacing,array-bracket-spacing *//* The lengths of the bit length codes are sent in order of decreasing * probability, to avoid transmitting the lengths for unused bit length codes. *//* =========================================================================== * Local data. These are initialized only once. */// We pre-fill arrays with 0 to avoid uninitialized gapsvar DIST_CODE_LEN = 512; /* see definition of array dist_code below */// !!!! Use flat array insdead of structure, Freq = i*2, Len = i*2+1var static_ltree  = new Array((L_CODES + 2) * 2);zero(static_ltree);/* The static literal tree. Since the bit lengths are imposed, there is no * need for the L_CODES extra codes used during heap construction. However * The codes 286 and 287 are needed to build a canonical tree (see _tr_init * below). */var static_dtree  = new Array(D_CODES * 2);zero(static_dtree);/* The static distance tree. (Actually a trivial tree since all codes use * 5 bits.) */var _dist_code    = new Array(DIST_CODE_LEN);zero(_dist_code);/* Distance codes. The first 256 values correspond to the distances * 3 .. 258, the last 256 values correspond to the top 8 bits of * the 15 bit distances. */var _length_code  = new Array(MAX_MATCH - MIN_MATCH + 1);zero(_length_code);/* length code for each normalized match length (0 == MIN_MATCH) */var base_length   = new Array(LENGTH_CODES);zero(base_length);/* First normalized length for each code (0 = MIN_MATCH) */var base_dist     = new Array(D_CODES);zero(base_dist);/* First normalized distance for each code (0 = distance of 1) */function StaticTreeDesc(static_tree, extra_bits, extra_base, elems, max_length) {  this.static_tree  = static_tree;  /* static tree or NULL */  this.extra_bits   = extra_bits;   /* extra bits for each code or NULL */  this.extra_base   = extra_base;   /* base index for extra_bits */  this.elems        = elems;        /* max number of elements in the tree */  this.max_length   = max_length;   /* max bit length for the codes */  // show if `static_tree` has data or dummy - needed for monomorphic objects  this.has_stree    = static_tree && static_tree.length;}var static_l_desc;var static_d_desc;var static_bl_desc;function TreeDesc(dyn_tree, stat_desc) {  this.dyn_tree = dyn_tree;     /* the dynamic tree */  this.max_code = 0;            /* largest code with non zero frequency */  this.stat_desc = stat_desc;   /* the corresponding static tree */}function d_code(dist) {  return dist < 256 ? _dist_code[dist] : _dist_code[256 + (dist >>> 7)];}/* =========================================================================== * Output a short LSB first on the stream. * IN assertion: there is enough room in pendingBuf. */function put_short(s, w) {//    put_byte(s, (uch)((w) & 0xff));//    put_byte(s, (uch)((ush)(w) >> 8));  s.pending_buf[s.pending++] = (w) & 0xff;  s.pending_buf[s.pending++] = (w >>> 8) & 0xff;}/* =========================================================================== * Send a value on a given number of bits. * IN assertion: length <= 16 and value fits in length bits. */function send_bits(s, value, length) {  if (s.bi_valid > (Buf_size - length)) {    s.bi_buf |= (value << s.bi_valid) & 0xffff;    put_short(s, s.bi_buf);    s.bi_buf = value >> (Buf_size - s.bi_valid);    s.bi_valid += length - Buf_size;  } else {    s.bi_buf |= (value << s.bi_valid) & 0xffff;    s.bi_valid += length;  }}function send_code(s, c, tree) {  send_bits(s, tree[c * 2]/*.Code*/, tree[c * 2 + 1]/*.Len*/);}/* =========================================================================== * Reverse the first len bits of a code, using straightforward code (a faster * method would use a table) * IN assertion: 1 <= len <= 15 */function bi_reverse(code, len) {  var res = 0;  do {    res |= code & 1;    code >>>= 1;    res <<= 1;  } while (--len > 0);  return res >>> 1;}/* =========================================================================== * Flush the bit buffer, keeping at most 7 bits in it. */function bi_flush(s) {  if (s.bi_valid === 16) {    put_short(s, s.bi_buf);    s.bi_buf = 0;    s.bi_valid = 0;  } else if (s.bi_valid >= 8) {    s.pending_buf[s.pending++] = s.bi_buf & 0xff;    s.bi_buf >>= 8;    s.bi_valid -= 8;  }}/* =========================================================================== * Compute the optimal bit lengths for a tree and update the total bit length * for the current block. * IN assertion: the fields freq and dad are set, heap[heap_max] and *    above are the tree nodes sorted by increasing frequency. * OUT assertions: the field len is set to the optimal bit length, the *     array bl_count contains the frequencies for each bit length. *     The length opt_len is updated; static_len is also updated if stree is *     not null. */function gen_bitlen(s, desc)//    deflate_state *s;//    tree_desc *desc;    /* the tree descriptor */{  var tree            = desc.dyn_tree;  var max_code        = desc.max_code;  var stree           = desc.stat_desc.static_tree;  var has_stree       = desc.stat_desc.has_stree;  var extra           = desc.stat_desc.extra_bits;  var base            = desc.stat_desc.extra_base;  var max_length      = desc.stat_desc.max_length;  var h;              /* heap index */  var n, m;           /* iterate over the tree elements */  var bits;           /* bit length */  var xbits;          /* extra bits */  var f;              /* frequency */  var overflow = 0;   /* number of elements with bit length too large */  for (bits = 0; bits <= MAX_BITS; bits++) {    s.bl_count[bits] = 0;  }  /* In a first pass, compute the optimal bit lengths (which may   * overflow in the case of the bit length tree).   */  tree[s.heap[s.heap_max] * 2 + 1]/*.Len*/ = 0; /* root of the heap */  for (h = s.heap_max + 1; h < HEAP_SIZE; h++) {    n = s.heap[h];    bits = tree[tree[n * 2 + 1]/*.Dad*/ * 2 + 1]/*.Len*/ + 1;    if (bits > max_length) {      bits = max_length;      overflow++;    }    tree[n * 2 + 1]/*.Len*/ = bits;    /* We overwrite tree[n].Dad which is no longer needed */    if (n > max_code) { continue; } /* not a leaf node */    s.bl_count[bits]++;    xbits = 0;    if (n >= base) {      xbits = extra[n - base];    }    f = tree[n * 2]/*.Freq*/;    s.opt_len += f * (bits + xbits);    if (has_stree) {      s.static_len += f * (stree[n * 2 + 1]/*.Len*/ + xbits);    }  }  if (overflow === 0) { return; }  // Trace((stderr,"\nbit length overflow\n"));  /* This happens for example on obj2 and pic of the Calgary corpus */  /* Find the first bit length which could increase: */  do {    bits = max_length - 1;    while (s.bl_count[bits] === 0) { bits--; }    s.bl_count[bits]--;      /* move one leaf down the tree */    s.bl_count[bits + 1] += 2; /* move one overflow item as its brother */    s.bl_count[max_length]--;    /* The brother of the overflow item also moves one step up,     * but this does not affect bl_count[max_length]     */    overflow -= 2;  } while (overflow > 0);  /* Now recompute all bit lengths, scanning in increasing frequency.   * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all   * lengths instead of fixing only the wrong ones. This idea is taken   * from 'ar' written by Haruhiko Okumura.)   */  for (bits = max_length; bits !== 0; bits--) {    n = s.bl_count[bits];    while (n !== 0) {      m = s.heap[--h];      if (m > max_code) { continue; }      if (tree[m * 2 + 1]/*.Len*/ !== bits) {        // Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));        s.opt_len += (bits - tree[m * 2 + 1]/*.Len*/) * tree[m * 2]/*.Freq*/;        tree[m * 2 + 1]/*.Len*/ = bits;      }      n--;    }  }}/* =========================================================================== * Generate the codes for a given tree and bit counts (which need not be * optimal). * IN assertion: the array bl_count contains the bit length statistics for * the given tree and the field len is set for all tree elements. * OUT assertion: the field code is set for all tree elements of non *     zero code length. */function gen_codes(tree, max_code, bl_count)//    ct_data *tree;             /* the tree to decorate *///    int max_code;              /* largest code with non zero frequency *///    ushf *bl_count;            /* number of codes at each bit length */{  var next_code = new Array(MAX_BITS + 1); /* next code value for each bit length */  var code = 0;              /* running code value */  var bits;                  /* bit index */  var n;                     /* code index */  /* The distribution counts are first used to generate the code values   * without bit reversal.   */  for (bits = 1; bits <= MAX_BITS; bits++) {    next_code[bits] = code = (code + bl_count[bits - 1]) << 1;  }  /* Check that the bit counts in bl_count are consistent. The last code   * must be all ones.   */  //Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,  //        "inconsistent bit counts");  //Tracev((stderr,"\ngen_codes: max_code %d ", max_code));  for (n = 0;  n <= max_code; n++) {    var len = tree[n * 2 + 1]/*.Len*/;    if (len === 0) { continue; }    /* Now reverse the bits */    tree[n * 2]/*.Code*/ = bi_reverse(next_code[len]++, len);    //Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",    //     n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));  }}/* =========================================================================== * Initialize the various 'constant' tables. */function tr_static_init() {  var n;        /* iterates over tree elements */  var bits;     /* bit counter */  var length;   /* length value */  var code;     /* code value */  var dist;     /* distance index */  var bl_count = new Array(MAX_BITS + 1);  /* number of codes at each bit length for an optimal tree */  // do check in _tr_init()  //if (static_init_done) return;  /* For some embedded targets, global variables are not initialized: *//*#ifdef NO_INIT_GLOBAL_POINTERS  static_l_desc.static_tree = static_ltree;  static_l_desc.extra_bits = extra_lbits;  static_d_desc.static_tree = static_dtree;  static_d_desc.extra_bits = extra_dbits;  static_bl_desc.extra_bits = extra_blbits;#endif*/  /* Initialize the mapping length (0..255) -> length code (0..28) */  length = 0;  for (code = 0; code < LENGTH_CODES - 1; code++) {    base_length[code] = length;    for (n = 0; n < (1 << extra_lbits[code]); n++) {      _length_code[length++] = code;    }  }  //Assert (length == 256, "tr_static_init: length != 256");  /* Note that the length 255 (match length 258) can be represented   * in two different ways: code 284 + 5 bits or code 285, so we   * overwrite length_code[255] to use the best encoding:   */  _length_code[length - 1] = code;  /* Initialize the mapping dist (0..32K) -> dist code (0..29) */  dist = 0;  for (code = 0; code < 16; code++) {    base_dist[code] = dist;    for (n = 0; n < (1 << extra_dbits[code]); n++) {      _dist_code[dist++] = code;    }  }  //Assert (dist == 256, "tr_static_init: dist != 256");  dist >>= 7; /* from now on, all distances are divided by 128 */  for (; code < D_CODES; code++) {    base_dist[code] = dist << 7;    for (n = 0; n < (1 << (extra_dbits[code] - 7)); n++) {      _dist_code[256 + dist++] = code;    }  }  //Assert (dist == 256, "tr_static_init: 256+dist != 512");  /* Construct the codes of the static literal tree */  for (bits = 0; bits <= MAX_BITS; bits++) {    bl_count[bits] = 0;  }  n = 0;  while (n <= 143) {    static_ltree[n * 2 + 1]/*.Len*/ = 8;    n++;    bl_count[8]++;  }  while (n <= 255) {    static_ltree[n * 2 + 1]/*.Len*/ = 9;    n++;    bl_count[9]++;  }  while (n <= 279) {    static_ltree[n * 2 + 1]/*.Len*/ = 7;    n++;    bl_count[7]++;  }  while (n <= 287) {    static_ltree[n * 2 + 1]/*.Len*/ = 8;    n++;    bl_count[8]++;  }  /* Codes 286 and 287 do not exist, but we must include them in the   * tree construction to get a canonical Huffman tree (longest code   * all ones)   */  gen_codes(static_ltree, L_CODES + 1, bl_count);  /* The static distance tree is trivial: */  for (n = 0; n < D_CODES; n++) {    static_dtree[n * 2 + 1]/*.Len*/ = 5;    static_dtree[n * 2]/*.Code*/ = bi_reverse(n, 5);  }  // Now data ready and we can init static trees  static_l_desc = new StaticTreeDesc(static_ltree, extra_lbits, LITERALS + 1, L_CODES, MAX_BITS);  static_d_desc = new StaticTreeDesc(static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS);  static_bl_desc = new StaticTreeDesc(new Array(0), extra_blbits, 0,         BL_CODES, MAX_BL_BITS);  //static_init_done = true;}/* =========================================================================== * Initialize a new block. */function init_block(s) {  var n; /* iterates over tree elements */  /* Initialize the trees. */  for (n = 0; n < L_CODES;  n++) { s.dyn_ltree[n * 2]/*.Freq*/ = 0; }  for (n = 0; n < D_CODES;  n++) { s.dyn_dtree[n * 2]/*.Freq*/ = 0; }  for (n = 0; n < BL_CODES; n++) { s.bl_tree[n * 2]/*.Freq*/ = 0; }  s.dyn_ltree[END_BLOCK * 2]/*.Freq*/ = 1;  s.opt_len = s.static_len = 0;  s.last_lit = s.matches = 0;}/* =========================================================================== * Flush the bit buffer and align the output on a byte boundary */function bi_windup(s){  if (s.bi_valid > 8) {    put_short(s, s.bi_buf);  } else if (s.bi_valid > 0) {    //put_byte(s, (Byte)s->bi_buf);    s.pending_buf[s.pending++] = s.bi_buf;  }  s.bi_buf = 0;  s.bi_valid = 0;}/* =========================================================================== * Copy a stored block, storing first the length and its * one's complement if requested. */function copy_block(s, buf, len, header)//DeflateState *s;//charf    *buf;    /* the input data *///unsigned len;     /* its length *///int      header;  /* true if block header must be written */{  bi_windup(s);        /* align on byte boundary */  if (header) {    put_short(s, len);    put_short(s, ~len);  }//  while (len--) {//    put_byte(s, *buf++);//  }  utils.arraySet(s.pending_buf, s.window, buf, len, s.pending);  s.pending += len;}/* =========================================================================== * Compares to subtrees, using the tree depth as tie breaker when * the subtrees have equal frequency. This minimizes the worst case length. */function smaller(tree, n, m, depth) {  var _n2 = n * 2;  var _m2 = m * 2;  return (tree[_n2]/*.Freq*/ < tree[_m2]/*.Freq*/ ||         (tree[_n2]/*.Freq*/ === tree[_m2]/*.Freq*/ && depth[n] <= depth[m]));}/* =========================================================================== * Restore the heap property by moving down the tree starting at node k, * exchanging a node with the smallest of its two sons if necessary, stopping * when the heap property is re-established (each father smaller than its * two sons). */function pqdownheap(s, tree, k)//    deflate_state *s;//    ct_data *tree;  /* the tree to restore *///    int k;               /* node to move down */{  var v = s.heap[k];  var j = k << 1;  /* left son of k */  while (j <= s.heap_len) {    /* Set j to the smallest of the two sons: */    if (j < s.heap_len &&      smaller(tree, s.heap[j + 1], s.heap[j], s.depth)) {      j++;    }    /* Exit if v is smaller than both sons */    if (smaller(tree, v, s.heap[j], s.depth)) { break; }    /* Exchange v with the smallest son */    s.heap[k] = s.heap[j];    k = j;    /* And continue down the tree, setting j to the left son of k */    j <<= 1;  }  s.heap[k] = v;}// inlined manually// var SMALLEST = 1;/* =========================================================================== * Send the block data compressed using the given Huffman trees */function compress_block(s, ltree, dtree)//    deflate_state *s;//    const ct_data *ltree; /* literal tree *///    const ct_data *dtree; /* distance tree */{  var dist;           /* distance of matched string */  var lc;             /* match length or unmatched char (if dist == 0) */  var lx = 0;         /* running index in l_buf */  var code;           /* the code to send */  var extra;          /* number of extra bits to send */  if (s.last_lit !== 0) {    do {      dist = (s.pending_buf[s.d_buf + lx * 2] << 8) | (s.pending_buf[s.d_buf + lx * 2 + 1]);      lc = s.pending_buf[s.l_buf + lx];      lx++;      if (dist === 0) {        send_code(s, lc, ltree); /* send a literal byte */        //Tracecv(isgraph(lc), (stderr," '%c' ", lc));      } else {        /* Here, lc is the match length - MIN_MATCH */        code = _length_code[lc];        send_code(s, code + LITERALS + 1, ltree); /* send the length code */        extra = extra_lbits[code];        if (extra !== 0) {          lc -= base_length[code];          send_bits(s, lc, extra);       /* send the extra length bits */        }        dist--; /* dist is now the match distance - 1 */        code = d_code(dist);        //Assert (code < D_CODES, "bad d_code");        send_code(s, code, dtree);       /* send the distance code */        extra = extra_dbits[code];        if (extra !== 0) {          dist -= base_dist[code];          send_bits(s, dist, extra);   /* send the extra distance bits */        }      } /* literal or match pair ? */      /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */      //Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx,      //       "pendingBuf overflow");    } while (lx < s.last_lit);  }  send_code(s, END_BLOCK, ltree);}/* =========================================================================== * Construct one Huffman tree and assigns the code bit strings and lengths. * Update the total bit length for the current block. * IN assertion: the field freq is set for all tree elements. * OUT assertions: the fields len and code are set to the optimal bit length *     and corresponding code. The length opt_len is updated; static_len is *     also updated if stree is not null. The field max_code is set. */function build_tree(s, desc)//    deflate_state *s;//    tree_desc *desc; /* the tree descriptor */{  var tree     = desc.dyn_tree;  var stree    = desc.stat_desc.static_tree;  var has_stree = desc.stat_desc.has_stree;  var elems    = desc.stat_desc.elems;  var n, m;          /* iterate over heap elements */  var max_code = -1; /* largest code with non zero frequency */  var node;          /* new node being created */  /* Construct the initial heap, with least frequent element in   * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].   * heap[0] is not used.   */  s.heap_len = 0;  s.heap_max = HEAP_SIZE;  for (n = 0; n < elems; n++) {    if (tree[n * 2]/*.Freq*/ !== 0) {      s.heap[++s.heap_len] = max_code = n;      s.depth[n] = 0;    } else {      tree[n * 2 + 1]/*.Len*/ = 0;    }  }  /* The pkzip format requires that at least one distance code exists,   * and that at least one bit should be sent even if there is only one   * possible code. So to avoid special checks later on we force at least   * two codes of non zero frequency.   */  while (s.heap_len < 2) {    node = s.heap[++s.heap_len] = (max_code < 2 ? ++max_code : 0);    tree[node * 2]/*.Freq*/ = 1;    s.depth[node] = 0;    s.opt_len--;    if (has_stree) {      s.static_len -= stree[node * 2 + 1]/*.Len*/;    }    /* node is 0 or 1 so it does not have extra bits */  }  desc.max_code = max_code;  /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,   * establish sub-heaps of increasing lengths:   */  for (n = (s.heap_len >> 1/*int /2*/); n >= 1; n--) { pqdownheap(s, tree, n); }  /* Construct the Huffman tree by repeatedly combining the least two   * frequent nodes.   */  node = elems;              /* next internal node of the tree */  do {    //pqremove(s, tree, n);  /* n = node of least frequency */    /*** pqremove ***/    n = s.heap[1/*SMALLEST*/];    s.heap[1/*SMALLEST*/] = s.heap[s.heap_len--];    pqdownheap(s, tree, 1/*SMALLEST*/);    /***/    m = s.heap[1/*SMALLEST*/]; /* m = node of next least frequency */    s.heap[--s.heap_max] = n; /* keep the nodes sorted by frequency */    s.heap[--s.heap_max] = m;    /* Create a new node father of n and m */    tree[node * 2]/*.Freq*/ = tree[n * 2]/*.Freq*/ + tree[m * 2]/*.Freq*/;    s.depth[node] = (s.depth[n] >= s.depth[m] ? s.depth[n] : s.depth[m]) + 1;    tree[n * 2 + 1]/*.Dad*/ = tree[m * 2 + 1]/*.Dad*/ = node;    /* and insert the new node in the heap */    s.heap[1/*SMALLEST*/] = node++;    pqdownheap(s, tree, 1/*SMALLEST*/);  } while (s.heap_len >= 2);  s.heap[--s.heap_max] = s.heap[1/*SMALLEST*/];  /* At this point, the fields freq and dad are set. We can now   * generate the bit lengths.   */  gen_bitlen(s, desc);  /* The field len is now set, we can generate the bit codes */  gen_codes(tree, max_code, s.bl_count);}/* =========================================================================== * Scan a literal or distance tree to determine the frequencies of the codes * in the bit length tree. */function scan_tree(s, tree, max_code)//    deflate_state *s;//    ct_data *tree;   /* the tree to be scanned *///    int max_code;    /* and its largest code of non zero frequency */{  var n;                     /* iterates over all tree elements */  var prevlen = -1;          /* last emitted length */  var curlen;                /* length of current code */  var nextlen = tree[0 * 2 + 1]/*.Len*/; /* length of next code */  var count = 0;             /* repeat count of the current code */  var max_count = 7;         /* max repeat count */  var min_count = 4;         /* min repeat count */  if (nextlen === 0) {    max_count = 138;    min_count = 3;  }  tree[(max_code + 1) * 2 + 1]/*.Len*/ = 0xffff; /* guard */  for (n = 0; n <= max_code; n++) {    curlen = nextlen;    nextlen = tree[(n + 1) * 2 + 1]/*.Len*/;    if (++count < max_count && curlen === nextlen) {      continue;    } else if (count < min_count) {      s.bl_tree[curlen * 2]/*.Freq*/ += count;    } else if (curlen !== 0) {      if (curlen !== prevlen) { s.bl_tree[curlen * 2]/*.Freq*/++; }      s.bl_tree[REP_3_6 * 2]/*.Freq*/++;    } else if (count <= 10) {      s.bl_tree[REPZ_3_10 * 2]/*.Freq*/++;    } else {      s.bl_tree[REPZ_11_138 * 2]/*.Freq*/++;    }    count = 0;    prevlen = curlen;    if (nextlen === 0) {      max_count = 138;      min_count = 3;    } else if (curlen === nextlen) {      max_count = 6;      min_count = 3;    } else {      max_count = 7;      min_count = 4;    }  }}/* =========================================================================== * Send a literal or distance tree in compressed form, using the codes in * bl_tree. */function send_tree(s, tree, max_code)//    deflate_state *s;//    ct_data *tree; /* the tree to be scanned *///    int max_code;       /* and its largest code of non zero frequency */{  var n;                     /* iterates over all tree elements */  var prevlen = -1;          /* last emitted length */  var curlen;                /* length of current code */  var nextlen = tree[0 * 2 + 1]/*.Len*/; /* length of next code */  var count = 0;             /* repeat count of the current code */  var max_count = 7;         /* max repeat count */  var min_count = 4;         /* min repeat count */  /* tree[max_code+1].Len = -1; */  /* guard already set */  if (nextlen === 0) {    max_count = 138;    min_count = 3;  }  for (n = 0; n <= max_code; n++) {    curlen = nextlen;    nextlen = tree[(n + 1) * 2 + 1]/*.Len*/;    if (++count < max_count && curlen === nextlen) {      continue;    } else if (count < min_count) {      do { send_code(s, curlen, s.bl_tree); } while (--count !== 0);    } else if (curlen !== 0) {      if (curlen !== prevlen) {        send_code(s, curlen, s.bl_tree);        count--;      }      //Assert(count >= 3 && count <= 6, " 3_6?");      send_code(s, REP_3_6, s.bl_tree);      send_bits(s, count - 3, 2);    } else if (count <= 10) {      send_code(s, REPZ_3_10, s.bl_tree);      send_bits(s, count - 3, 3);    } else {      send_code(s, REPZ_11_138, s.bl_tree);      send_bits(s, count - 11, 7);    }    count = 0;    prevlen = curlen;    if (nextlen === 0) {      max_count = 138;      min_count = 3;    } else if (curlen === nextlen) {      max_count = 6;      min_count = 3;    } else {      max_count = 7;      min_count = 4;    }  }}/* =========================================================================== * Construct the Huffman tree for the bit lengths and return the index in * bl_order of the last bit length code to send. */function build_bl_tree(s) {  var max_blindex;  /* index of last bit length code of non zero freq */  /* Determine the bit length frequencies for literal and distance trees */  scan_tree(s, s.dyn_ltree, s.l_desc.max_code);  scan_tree(s, s.dyn_dtree, s.d_desc.max_code);  /* Build the bit length tree: */  build_tree(s, s.bl_desc);  /* opt_len now includes the length of the tree representations, except   * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.   */  /* Determine the number of bit length codes to send. The pkzip format   * requires that at least 4 bit length codes be sent. (appnote.txt says   * 3 but the actual value used is 4.)   */  for (max_blindex = BL_CODES - 1; max_blindex >= 3; max_blindex--) {    if (s.bl_tree[bl_order[max_blindex] * 2 + 1]/*.Len*/ !== 0) {      break;    }  }  /* Update opt_len to include the bit length tree and counts */  s.opt_len += 3 * (max_blindex + 1) + 5 + 5 + 4;  //Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",  //        s->opt_len, s->static_len));  return max_blindex;}/* =========================================================================== * Send the header for a block using dynamic Huffman trees: the counts, the * lengths of the bit length codes, the literal tree and the distance tree. * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4. */function send_all_trees(s, lcodes, dcodes, blcodes)//    deflate_state *s;//    int lcodes, dcodes, blcodes; /* number of codes for each tree */{  var rank;                    /* index in bl_order */  //Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");  //Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,  //        "too many codes");  //Tracev((stderr, "\nbl counts: "));  send_bits(s, lcodes - 257, 5); /* not +255 as stated in appnote.txt */  send_bits(s, dcodes - 1,   5);  send_bits(s, blcodes - 4,  4); /* not -3 as stated in appnote.txt */  for (rank = 0; rank < blcodes; rank++) {    //Tracev((stderr, "\nbl code %2d ", bl_order[rank]));    send_bits(s, s.bl_tree[bl_order[rank] * 2 + 1]/*.Len*/, 3);  }  //Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));  send_tree(s, s.dyn_ltree, lcodes - 1); /* literal tree */  //Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));  send_tree(s, s.dyn_dtree, dcodes - 1); /* distance tree */  //Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));}/* =========================================================================== * Check if the data type is TEXT or BINARY, using the following algorithm: * - TEXT if the two conditions below are satisfied: *    a) There are no non-portable control characters belonging to the *       "black list" (0..6, 14..25, 28..31). *    b) There is at least one printable character belonging to the *       "white list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255). * - BINARY otherwise. * - The following partially-portable control characters form a *   "gray list" that is ignored in this detection algorithm: *   (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}). * IN assertion: the fields Freq of dyn_ltree are set. */function detect_data_type(s) {  /* black_mask is the bit mask of black-listed bytes   * set bits 0..6, 14..25, and 28..31   * 0xf3ffc07f = binary 11110011111111111100000001111111   */  var black_mask = 0xf3ffc07f;  var n;  /* Check for non-textual ("black-listed") bytes. */  for (n = 0; n <= 31; n++, black_mask >>>= 1) {    if ((black_mask & 1) && (s.dyn_ltree[n * 2]/*.Freq*/ !== 0)) {      return Z_BINARY;    }  }  /* Check for textual ("white-listed") bytes. */  if (s.dyn_ltree[9 * 2]/*.Freq*/ !== 0 || s.dyn_ltree[10 * 2]/*.Freq*/ !== 0 ||      s.dyn_ltree[13 * 2]/*.Freq*/ !== 0) {    return Z_TEXT;  }  for (n = 32; n < LITERALS; n++) {    if (s.dyn_ltree[n * 2]/*.Freq*/ !== 0) {      return Z_TEXT;    }  }  /* There are no "black-listed" or "white-listed" bytes:   * this stream either is empty or has tolerated ("gray-listed") bytes only.   */  return Z_BINARY;}var static_init_done = false;/* =========================================================================== * Initialize the tree data structures for a new zlib stream. */function _tr_init(s){  if (!static_init_done) {    tr_static_init();    static_init_done = true;  }  s.l_desc  = new TreeDesc(s.dyn_ltree, static_l_desc);  s.d_desc  = new TreeDesc(s.dyn_dtree, static_d_desc);  s.bl_desc = new TreeDesc(s.bl_tree, static_bl_desc);  s.bi_buf = 0;  s.bi_valid = 0;  /* Initialize the first block of the first file: */  init_block(s);}/* =========================================================================== * Send a stored block */function _tr_stored_block(s, buf, stored_len, last)//DeflateState *s;//charf *buf;       /* input block *///ulg stored_len;   /* length of input block *///int last;         /* one if this is the last block for a file */{  send_bits(s, (STORED_BLOCK << 1) + (last ? 1 : 0), 3);    /* send block type */  copy_block(s, buf, stored_len, true); /* with header */}/* =========================================================================== * Send one empty static block to give enough lookahead for inflate. * This takes 10 bits, of which 7 may remain in the bit buffer. */function _tr_align(s) {  send_bits(s, STATIC_TREES << 1, 3);  send_code(s, END_BLOCK, static_ltree);  bi_flush(s);}/* =========================================================================== * Determine the best encoding for the current block: dynamic trees, static * trees or store, and output the encoded block to the zip file. */function _tr_flush_block(s, buf, stored_len, last)//DeflateState *s;//charf *buf;       /* input block, or NULL if too old *///ulg stored_len;   /* length of input block *///int last;         /* one if this is the last block for a file */{  var opt_lenb, static_lenb;  /* opt_len and static_len in bytes */  var max_blindex = 0;        /* index of last bit length code of non zero freq */  /* Build the Huffman trees unless a stored block is forced */  if (s.level > 0) {    /* Check if the file is binary or text */    if (s.strm.data_type === Z_UNKNOWN) {      s.strm.data_type = detect_data_type(s);    }    /* Construct the literal and distance trees */    build_tree(s, s.l_desc);    // Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,    //        s->static_len));    build_tree(s, s.d_desc);    // Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,    //        s->static_len));    /* At this point, opt_len and static_len are the total bit lengths of     * the compressed block data, excluding the tree representations.     */    /* Build the bit length tree for the above two trees, and get the index     * in bl_order of the last bit length code to send.     */    max_blindex = build_bl_tree(s);    /* Determine the best encoding. Compute the block lengths in bytes. */    opt_lenb = (s.opt_len + 3 + 7) >>> 3;    static_lenb = (s.static_len + 3 + 7) >>> 3;    // Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",    //        opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,    //        s->last_lit));    if (static_lenb <= opt_lenb) { opt_lenb = static_lenb; }  } else {    // Assert(buf != (char*)0, "lost buf");    opt_lenb = static_lenb = stored_len + 5; /* force a stored block */  }  if ((stored_len + 4 <= opt_lenb) && (buf !== -1)) {    /* 4: two words for the lengths */    /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.     * Otherwise we can't have processed more than WSIZE input bytes since     * the last block flush, because compression would have been     * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to     * transform a block into a stored block.     */    _tr_stored_block(s, buf, stored_len, last);  } else if (s.strategy === Z_FIXED || static_lenb === opt_lenb) {    send_bits(s, (STATIC_TREES << 1) + (last ? 1 : 0), 3);    compress_block(s, static_ltree, static_dtree);  } else {    send_bits(s, (DYN_TREES << 1) + (last ? 1 : 0), 3);    send_all_trees(s, s.l_desc.max_code + 1, s.d_desc.max_code + 1, max_blindex + 1);    compress_block(s, s.dyn_ltree, s.dyn_dtree);  }  // Assert (s->compressed_len == s->bits_sent, "bad compressed size");  /* The above check is made mod 2^32, for files larger than 512 MB   * and uLong implemented on 32 bits.   */  init_block(s);  if (last) {    bi_windup(s);  }  // Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,  //       s->compressed_len-7*last));}/* =========================================================================== * Save the match info and tally the frequency counts. Return true if * the current block must be flushed. */function _tr_tally(s, dist, lc)//    deflate_state *s;//    unsigned dist;  /* distance of matched string *///    unsigned lc;    /* match length-MIN_MATCH or unmatched char (if dist==0) */{  //var out_length, in_length, dcode;  s.pending_buf[s.d_buf + s.last_lit * 2]     = (dist >>> 8) & 0xff;  s.pending_buf[s.d_buf + s.last_lit * 2 + 1] = dist & 0xff;  s.pending_buf[s.l_buf + s.last_lit] = lc & 0xff;  s.last_lit++;  if (dist === 0) {    /* lc is the unmatched char */    s.dyn_ltree[lc * 2]/*.Freq*/++;  } else {    s.matches++;    /* Here, lc is the match length - MIN_MATCH */    dist--;             /* dist = match distance - 1 */    //Assert((ush)dist < (ush)MAX_DIST(s) &&    //       (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&    //       (ush)d_code(dist) < (ush)D_CODES,  "_tr_tally: bad match");    s.dyn_ltree[(_length_code[lc] + LITERALS + 1) * 2]/*.Freq*/++;    s.dyn_dtree[d_code(dist) * 2]/*.Freq*/++;  }// (!) This block is disabled in zlib defailts,// don't enable it for binary compatibility//#ifdef TRUNCATE_BLOCK//  /* Try to guess if it is profitable to stop the current block here *///  if ((s.last_lit & 0x1fff) === 0 && s.level > 2) {//    /* Compute an upper bound for the compressed length *///    out_length = s.last_lit*8;//    in_length = s.strstart - s.block_start;////    for (dcode = 0; dcode < D_CODES; dcode++) {//      out_length += s.dyn_dtree[dcode*2]/*.Freq*/ * (5 + extra_dbits[dcode]);//    }//    out_length >>>= 3;//    //Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",//    //       s->last_lit, in_length, out_length,//    //       100L - out_length*100L/in_length));//    if (s.matches < (s.last_lit>>1)/*int /2*/ && out_length < (in_length>>1)/*int /2*/) {//      return true;//    }//  }//#endif  return (s.last_lit === s.lit_bufsize - 1);  /* We avoid equality with lit_bufsize because of wraparound at 64K   * on 16 bit machines and because stored blocks are restricted to   * 64K-1 bytes.   */}exports._tr_init  = _tr_init;exports._tr_stored_block = _tr_stored_block;exports._tr_flush_block  = _tr_flush_block;exports._tr_tally = _tr_tally;exports._tr_align = _tr_align;},{"../utils/common":1}],8:[function(require,module,exports){'use strict';function ZStream() {  /* next input byte */  this.input = null; // JS specific, because we have no pointers  this.next_in = 0;  /* number of bytes available at input */  this.avail_in = 0;  /* total number of input bytes read so far */  this.total_in = 0;  /* next output byte should be put there */  this.output = null; // JS specific, because we have no pointers  this.next_out = 0;  /* remaining free space at output */  this.avail_out = 0;  /* total number of bytes output so far */  this.total_out = 0;  /* last error message, NULL if no error */  this.msg = ''/*Z_NULL*/;  /* not visible by applications */  this.state = null;  /* best guess about the data type: binary or text */  this.data_type = 2/*Z_UNKNOWN*/;  /* adler32 value of the uncompressed data */  this.adler = 0;}module.exports = ZStream;},{}],"/lib/deflate.js":[function(require,module,exports){'use strict';var zlib_deflate = require('./zlib/deflate');var utils        = require('./utils/common');var strings      = require('./utils/strings');var msg          = require('./zlib/messages');var ZStream      = require('./zlib/zstream');var toString = Object.prototype.toString;/* Public constants ==========================================================*//* ===========================================================================*/var Z_NO_FLUSH      = 0;var Z_FINISH        = 4;var Z_OK            = 0;var Z_STREAM_END    = 1;var Z_SYNC_FLUSH    = 2;var Z_DEFAULT_COMPRESSION = -1;var Z_DEFAULT_STRATEGY    = 0;var Z_DEFLATED  = 8;/* ===========================================================================*//** * class Deflate * * Generic JS-style wrapper for zlib calls. If you don't need * streaming behaviour - use more simple functions: [[deflate]], * [[deflateRaw]] and [[gzip]]. **//* internal * Deflate.chunks -> Array * * Chunks of output data, if [[Deflate#onData]] not overriden. **//** * Deflate.result -> Uint8Array|Array * * Compressed result, generated by default [[Deflate#onData]] * and [[Deflate#onEnd]] handlers. Filled after you push last chunk * (call [[Deflate#push]] with `Z_FINISH` / `true` param)  or if you * push a chunk with explicit flush (call [[Deflate#push]] with * `Z_SYNC_FLUSH` param). **//** * Deflate.err -> Number * * Error code after deflate finished. 0 (Z_OK) on success. * You will not need it in real life, because deflate errors * are possible only on wrong options or bad `onData` / `onEnd` * custom handlers. **//** * Deflate.msg -> String * * Error message, if [[Deflate.err]] != 0 **//** * new Deflate(options) * - options (Object): zlib deflate options. * * Creates new deflator instance with specified params. Throws exception * on bad params. Supported options: * * - `level` * - `windowBits` * - `memLevel` * - `strategy` * - `dictionary` * * [http://zlib.net/manual.html#Advanced](http://zlib.net/manual.html#Advanced) * for more information on these. * * Additional options, for internal needs: * * - `chunkSize` - size of generated data chunks (16K by default) * - `raw` (Boolean) - do raw deflate * - `gzip` (Boolean) - create gzip wrapper * - `to` (String) - if equal to 'string', then result will be "binary string" *    (each char code [0..255]) * - `header` (Object) - custom header for gzip *   - `text` (Boolean) - true if compressed data believed to be text *   - `time` (Number) - modification time, unix timestamp *   - `os` (Number) - operation system code *   - `extra` (Array) - array of bytes with extra data (max 65536) *   - `name` (String) - file name (binary string) *   - `comment` (String) - comment (binary string) *   - `hcrc` (Boolean) - true if header crc should be added * * ##### Example: * * ```javascript * var pako = require('pako') *   , chunk1 = Uint8Array([1,2,3,4,5,6,7,8,9]) *   , chunk2 = Uint8Array([10,11,12,13,14,15,16,17,18,19]); * * var deflate = new pako.Deflate({ level: 3}); * * deflate.push(chunk1, false); * deflate.push(chunk2, true);  // true -> last chunk * * if (deflate.err) { throw new Error(deflate.err); } * * console.log(deflate.result); * ``` **/function Deflate(options) {  if (!(this instanceof Deflate)) return new Deflate(options);  this.options = utils.assign({    level: Z_DEFAULT_COMPRESSION,    method: Z_DEFLATED,    chunkSize: 16384,    windowBits: 15,    memLevel: 8,    strategy: Z_DEFAULT_STRATEGY,    to: ''  }, options || {});  var opt = this.options;  if (opt.raw && (opt.windowBits > 0)) {    opt.windowBits = -opt.windowBits;  }  else if (opt.gzip && (opt.windowBits > 0) && (opt.windowBits < 16)) {    opt.windowBits += 16;  }  this.err    = 0;      // error code, if happens (0 = Z_OK)  this.msg    = '';     // error message  this.ended  = false;  // used to avoid multiple onEnd() calls  this.chunks = [];     // chunks of compressed data  this.strm = new ZStream();  this.strm.avail_out = 0;  var status = zlib_deflate.deflateInit2(    this.strm,    opt.level,    opt.method,    opt.windowBits,    opt.memLevel,    opt.strategy  );  if (status !== Z_OK) {    throw new Error(msg[status]);  }  if (opt.header) {    zlib_deflate.deflateSetHeader(this.strm, opt.header);  }  if (opt.dictionary) {    var dict;    // Convert data if needed    if (typeof opt.dictionary === 'string') {      // If we need to compress text, change encoding to utf8.      dict = strings.string2buf(opt.dictionary);    } else if (toString.call(opt.dictionary) === '[object ArrayBuffer]') {      dict = new Uint8Array(opt.dictionary);    } else {      dict = opt.dictionary;    }    status = zlib_deflate.deflateSetDictionary(this.strm, dict);    if (status !== Z_OK) {      throw new Error(msg[status]);    }    this._dict_set = true;  }}/** * Deflate#push(data[, mode]) -> Boolean * - data (Uint8Array|Array|ArrayBuffer|String): input data. Strings will be *   converted to utf8 byte sequence. * - mode (Number|Boolean): 0..6 for corresponding Z_NO_FLUSH..Z_TREE modes. *   See constants. Skipped or `false` means Z_NO_FLUSH, `true` meansh Z_FINISH. * * Sends input data to deflate pipe, generating [[Deflate#onData]] calls with * new compressed chunks. Returns `true` on success. The last data block must have * mode Z_FINISH (or `true`). That will flush internal pending buffers and call * [[Deflate#onEnd]]. For interim explicit flushes (without ending the stream) you * can use mode Z_SYNC_FLUSH, keeping the compression context. * * On fail call [[Deflate#onEnd]] with error code and return false. * * We strongly recommend to use `Uint8Array` on input for best speed (output * array format is detected automatically). Also, don't skip last param and always * use the same type in your code (boolean or number). That will improve JS speed. * * For regular `Array`-s make sure all elements are [0..255]. * * ##### Example * * ```javascript * push(chunk, false); // push one of data chunks * ... * push(chunk, true);  // push last chunk * ``` **/Deflate.prototype.push = function (data, mode) {  var strm = this.strm;  var chunkSize = this.options.chunkSize;  var status, _mode;  if (this.ended) { return false; }  _mode = (mode === ~~mode) ? mode : ((mode === true) ? Z_FINISH : Z_NO_FLUSH);  // Convert data if needed  if (typeof data === 'string') {    // If we need to compress text, change encoding to utf8.    strm.input = strings.string2buf(data);  } else if (toString.call(data) === '[object ArrayBuffer]') {    strm.input = new Uint8Array(data);  } else {    strm.input = data;  }  strm.next_in = 0;  strm.avail_in = strm.input.length;  do {    if (strm.avail_out === 0) {      strm.output = new utils.Buf8(chunkSize);      strm.next_out = 0;      strm.avail_out = chunkSize;    }    status = zlib_deflate.deflate(strm, _mode);    /* no bad return value */    if (status !== Z_STREAM_END && status !== Z_OK) {      this.onEnd(status);      this.ended = true;      return false;    }    if (strm.avail_out === 0 || (strm.avail_in === 0 && (_mode === Z_FINISH || _mode === Z_SYNC_FLUSH))) {      if (this.options.to === 'string') {        this.onData(strings.buf2binstring(utils.shrinkBuf(strm.output, strm.next_out)));      } else {        this.onData(utils.shrinkBuf(strm.output, strm.next_out));      }    }  } while ((strm.avail_in > 0 || strm.avail_out === 0) && status !== Z_STREAM_END);  // Finalize on the last chunk.  if (_mode === Z_FINISH) {    status = zlib_deflate.deflateEnd(this.strm);    this.onEnd(status);    this.ended = true;    return status === Z_OK;  }  // callback interim results if Z_SYNC_FLUSH.  if (_mode === Z_SYNC_FLUSH) {    this.onEnd(Z_OK);    strm.avail_out = 0;    return true;  }  return true;};/** * Deflate#onData(chunk) -> Void * - chunk (Uint8Array|Array|String): ouput data. Type of array depends *   on js engine support. When string output requested, each chunk *   will be string. * * By default, stores data blocks in `chunks[]` property and glue * those in `onEnd`. Override this handler, if you need another behaviour. **/Deflate.prototype.onData = function (chunk) {  this.chunks.push(chunk);};/** * Deflate#onEnd(status) -> Void * - status (Number): deflate status. 0 (Z_OK) on success, *   other if not. * * Called once after you tell deflate that the input stream is * complete (Z_FINISH) or should be flushed (Z_SYNC_FLUSH) * or if an error happened. By default - join collected chunks, * free memory and fill `results` / `err` properties. **/Deflate.prototype.onEnd = function (status) {  // On success - join  if (status === Z_OK) {    if (this.options.to === 'string') {      this.result = this.chunks.join('');    } else {      this.result = utils.flattenChunks(this.chunks);    }  }  this.chunks = [];  this.err = status;  this.msg = this.strm.msg;};/** * deflate(data[, options]) -> Uint8Array|Array|String * - data (Uint8Array|Array|String): input data to compress. * - options (Object): zlib deflate options. * * Compress `data` with deflate algorithm and `options`. * * Supported options are: * * - level * - windowBits * - memLevel * - strategy * - dictionary * * [http://zlib.net/manual.html#Advanced](http://zlib.net/manual.html#Advanced) * for more information on these. * * Sugar (options): * * - `raw` (Boolean) - say that we work with raw stream, if you don't wish to specify *   negative windowBits implicitly. * - `to` (String) - if equal to 'string', then result will be "binary string" *    (each char code [0..255]) * * ##### Example: * * ```javascript * var pako = require('pako') *   , data = Uint8Array([1,2,3,4,5,6,7,8,9]); * * console.log(pako.deflate(data)); * ``` **/function deflate(input, options) {  var deflator = new Deflate(options);  deflator.push(input, true);  // That will never happens, if you don't cheat with options :)  if (deflator.err) { throw deflator.msg; }  return deflator.result;}/** * deflateRaw(data[, options]) -> Uint8Array|Array|String * - data (Uint8Array|Array|String): input data to compress. * - options (Object): zlib deflate options. * * The same as [[deflate]], but creates raw data, without wrapper * (header and adler32 crc). **/function deflateRaw(input, options) {  options = options || {};  options.raw = true;  return deflate(input, options);}/** * gzip(data[, options]) -> Uint8Array|Array|String * - data (Uint8Array|Array|String): input data to compress. * - options (Object): zlib deflate options. * * The same as [[deflate]], but create gzip wrapper instead of * deflate one. **/function gzip(input, options) {  options = options || {};  options.gzip = true;  return deflate(input, options);}exports.Deflate = Deflate;exports.deflate = deflate;exports.deflateRaw = deflateRaw;exports.gzip = gzip;},{"./utils/common":1,"./utils/strings":2,"./zlib/deflate":5,"./zlib/messages":6,"./zlib/zstream":8}]},{},[])("/lib/deflate.js")});
 |